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1.0 SUMMARY

The purpose of this report is to document the initial set of power condi-

tioning models created to estimate power management and distribution (PMAD) com-

ponent masses and sizes. This first set contains converter, rectifier, inverter,

transformer, remote bus isolator (RBI), and remote power controller (RPC) models.

The objective is to form a library of PMAD models that will allow system design-

ers to assess various power system architectures and distribution techniques

quickly and consistently. It is recommended that the models developed during

this study only be used for conceptual design studies which require "ballpark"

PMAD mass estimates. To determine specific PMAD design choices such as component

topologies, and transmission and distribution voltages and frequencies requires
specific power system requirements and more detailed analyses.

These models are designed primarily for space exploration initiative (SEI)
missions that require continuous power and support manned operations. The model

development is based on the fact that power conditioning components have common

stages and that their interconnection and control determines the function and

operation of the component. The stages contained in a component are defined,
their masses calculated, and the control and monitoring, enclosure, and thermal

management masses are added to determine the mass of the complete component. The

models are based on components that use passive or active thermal management and

they estimate component heat sink, coldplate, and radiator masses (the masses of

pumps, plumbing, etc. are not included). The model documentation explains the

component equations, including their constants and exponents; identifies model

limitations; specifies valid input ranges; and discusses methods for applying the
component models. A separate section explains how to link individual models to

form a complete power transmission and distribution system model.

Before creating the power conditioning models, a power element technology

assessment was conducted to gauge the amount of advancement one could reasonably
expect by the year 2000. From this assessment, component characteristics consis-

tent with future PMAD designs were generated. The model development was initiat-
ed by identifying common component stages and obtaining mass breakdowns for these

stages from electronic hardware elements proposed for near term missions such as

the Space Station. Technology advances were then incorporated to generate hard-

ware masses consistent with the 2000 to 2010 time period. These projected mass

breakdowns served as benchmarks, and they were the basis for mass breakdowns gen-

erated at other operating points. Equations representing the various component

stages were developed from these data points using curve fitting techniques. The
final step was to assimilate selected equations into a spreadsheet to form a com-
plete component model.

The previously identified power conditioning component models allow certain

studies to be performed; however, other models are required to conduct a thorough
evaluation of lunar base PMAD alternatives and perform other PMAD system studies.

A list of these component and transmission line models is contained in the con-

clusions and recommendations section of this report. It is suggested that models

be created for these PMAD components during follow up task orders.

] Revised



2.0 INTRODUCTION

This task was initiated to develop and document easy to use, standardized

PMAD models for power system studies. Earlier centralized versus decentralized

lunar base power system analyses used simple power conditioning and transmission
line models to conduct architecture, voltage, and frequency trade studies (Ref.

If-l). These models were obtained by NASA LeRC and questions were raised about

their development, applications, and capabilities. It became apparent that addi-
tional models were required to allow a wider variety of power systems to be eval-

uated and that the earlier created models needed to be revised to include the

latest information, enhanced in capability and flexibility, and most importantly

documented to allow critical review by experts in the field. This report repre-

sents a beginning in this process. Subsequent reports containing additional pow-
er conditioning and transmission line models will allow a library of PMAD models

to be formed. First though, the models presented in this report must be evaluat-

ed since it is important to reach a consensus on the approach employed and the

model accuracy before proceeding with future work.

The models contained in this report are intended to be simple to use and

yield useful results. While these objectives are desirable, individuals not
familiar with PMAD systems may assume the components are easy to design and the

technology is mature. This is clearly wrong. New design approaches and emerging

technologies are continually being studied to achieve better performance and
reduce mass. Consequently, to develop representative PMAD models it was neces-

sary to review different technologies and evaluate these against proposed space

exploration initiative (SEI) applications. The objective was to conceive a set
of component characteristics and operating conditions that would be consistent

with future PMAD designs.

Anticipated improvements in PMAD components are reflected in the models and
discussed in the sections dedicated to those devices. Although a concentrated

development effort is necessary to achieve many of these performance levels, this

report does not propose methods for realizing them or identifycritical technol-

ogy areas. This is not its intent. Technology projections will be addressed on
a case by case basis, but in general they are based on information obtained from

related power system studies and discussions with experts in the PMAD field. The

purpose of this report is not to contribute component design information, but to

present models representative of future PMAD components and explain the rationale

employed during their development. Subsequent tasks will need to identify the
critical technology areas that must be developed to fabricate and deploy proposed

SEI power systems.

Every SEI application will have different operating requirements, many of
which are not even envisioned at the present time. Although the models in this

report are designed to accept a wide range of operating parameters, they are not

capable of addressing all aspects of a particular application. It was necessary

to assume typical values for some parameters. This naturally introduces a cer-
tain amount of error and it is one reason model outputs should be compared with

other sources of information. These models also address a specific type of power

system operation. To understand their scope, it is necessary to briefly discuss

other power system operating methods and models developed to represent them.

Depending on their application, PMAD systems tend to fall into two broad

categories, burst or continuous power. Burst power systems are suited for short



term operation, generally less than fifteen minutes. Continuous power systems
are designed for reasonably steady state operation and they typically operate for
years. These operating differences lead to different design approaches, espe-
cially in the area of thermal management.

The short operating life of a burst power system allows adiabatic or cryo-
genic cooling techniques to be employed. Adiabatic cooling relies on the heat
capacity of the componentand adjacent structure to absorb generated heat. Mass
constraints essentially limit adiabatic cooling times to under 120 seconds. Cry-
ogenic cooling normally uses liquid hydrogen or nitrogen to cool the power con-
ditioning components to near cryogenic temperatures. The cryogenic liquid and
its tankage can be quite heavy; hence, cryogenic cooling is often employed only
when that liquid can cool several items or is needed for other reasons on the
platform. It generally is not practical to condensethe gas byproduct back into
its liquid form becausecryogenic refrigeration processes are not very efficient.
For these reasons, cryogenic cooling is also limited to relatively short periods.

A PMADsystem designed for long term operation requires radiators and pas-
sive and/or active thermal managementtechniques. Componentsin apassive system
contain internal heat sinks and thermal paths that conduct generated heat to a
coldplate. Heat pipes routed through the coldplate then transport this heat out
to a radiator for dissipation. An active cooling system employing a coldplate
would use a pumpedloop containing a liquid to carry heat from the coldplate to
a radiator surface. An alternate active cooling technique eliminates the need
for a dedicated coldplate and greatly reduces the amountof passive heat transfer
within a componentby pumping a liquid directly over the surfaces of the power
carrying devices and out to a radiator.

A. S. Gilmour developed power conditioning models for burst power systems
that relied on adiabatic cooling (Ref. II-2). Estimates generated by J. J.
Moriarty were for space based power conditioning components that operated in
either burst or continuous powermodes(Ref. II-3). In Moriarty's concept, waste
heat was passively conducted to spacecraft walls held at a constant temperature
of 20' C. Power conditioning algorithms developed by E. T. Gerry and W. J.
Shaefer were based on hydrogen cooled components operating from 200 to 1000
seconds (Ref. II-4). An unlimited supply of hydrogen ranging from 150 to 250 K
wasconsidered to be available. These reports provided valuable insight and some
of the masstrends contained in them were helpful in formulating the models con-
tained in this report. However, these models were developed for specific appli-
cations, applications very different than those portrayed in SEI reports. Since
Gilmour's models are basedon adiabatic cooling, they do not include any factors
for passive or active thermal managementsubsystems. The hardware necessary to
passively cool a device mayaccount for 80 to 90%of its total mass. Moriarty's
estimates include the hardware mass needed for passive heat transfer within a
component, but they do not include the mass of the external passive or active
cooling system required to cool the spacecraft walls. The algorithms developed
by Gerry and Shaefer assumedan unlimited supply of hydrogen was available for
cooling, an assumption that is not practical for long duration missions. An
individual using these models will nearly always obtain power conditioning mass
estimates that are muchlower than those forecast for a continuous, steady state
power system. In somecases, the values may be less than one-tenth of the
expected mass. Using values that originate from work done by Gilmour, Moriarty,
or Gerry and Shaefer for SEI mass estimates is therefore strongly discouraged.



Another factor affecting PMADmass is whether the platform is mannedor
unmanned. Mancritical systems have higher reliability, availability, and main-
tainability requirements. Consequently, a more conservative design approach is
usually employed. Componentsare operated at lower powerdensities and temper-
atures. This increases PMADmass because added thermal managementhardware is
required and larger powerdevices are used throughout the system. The components
in a mannedsystem mayalso needto be designed for easy removal and maintenance.
This also drives up PMADmassbecause componentswill need to be equipped with
electrical connectors, mechanical disconnects, and heat exchangers or fluid coup-
lings to provide detachable heat transfer paths.

Since manyproposed SEI missions are mannedor support mannedexpeditions,
reliability considerations influenced the model development. A detailed relia-
bility analysis was not conducted during this study, therefore it was necessary
to makesomebasic assumptions. It is anticipated that the lunar base require-
ments will specify at least a ten year operating life for power conditioning
components. Becausemanyof the present Space Station Freedom(SSF) components
are designed to meet a ten year meantime between failure (MTBF), this data was
relied on heavily during the model development. Reliability is normally improved
in two ways: (I) key elements within a componentcan be maderedundant, and (2)
multiple smaller units, each sized to handle a percentage of the power, can re-
place a single large unit. Unfortunately, reliability considerations typically
increase power system mass and place added demandson the instrumentation and
control subsystem. Incorporating internal redundancy into a componentincreases
its masssince additional elements are required. Replacing a single powercondi-
tioning unit with multiple smaller units increases massbecause someeconomies
of scale are sacrificed and ancillary hardware such as the enclosure, and control
and monitoring nowoccupy a larger percentage of the total componentmass. The
size and complexity of the instrumentation and control (I&C) subsystemthat over-
sees the entire power system is also expandedsince it must monitor a larger num-
ber of units and coordinate their operation. The mass impacts associated with
an enlarged I&C subsystemare not addressed by these models since they only per-
tain to individual power conditioning components.

The models contained in this report are primarily targeted for SEI missions
that demandcontinuous powerfor long time periods and support mannedoperations.
They are based on the use of passive or active thermal managementtechniques and
include equations to estimate the massesof componentheat sinks, coldplates, and
radiators. Just as Gilmour's, Moriarty's, and Gerry and Shaefer's models and es-
timates are only suitable for certain applications, the models in this report are
also oriented toward certain applications. They should only be used to estimate
masses, volumes, and efficiencies of componentsin highly reliable PMADsystems
designed for long duration, steady power delivery.



3.0 POWER CONDITIONING MODEL DEVELOPMENT

Before beginning to develop power conditioning models, a power element
technology assessment was conducted to determine the amount of advancement one

could reasonably expect by the year 2000. After considering anticipated tech-

nology advances in the context of proposed SEI missions, general conclusions were

reached. Numerous improvements are projected for converter elements, thermal

management subsystems and packaging techniques. It is anticipated that carbon-

carbon will be used extensively for enclosures and heat pipes, replacing aluminum
in many applications. Component radiators will also utilize carbon-carbon exten-

sively. Improvements in the magnetic materials area are expected to be fairly

minor and occur mainly in the high frequency region. High frequency transformer
and inductor core masses and losses should decline as a result. Incremental

improvements in capacitors should yield modest gains in energy density and effi-

ciency. Presently, most individual semiconductor switches are limited to operat-
ing voltages below 500 V (Ref. Ill-l). Recent advances in metal-oxide-semicon-

ductor field-effect-transistors (MOSFETs) and MOS controlled thyristors (MCTs)
indicate substantially higher voltage devices can be developed by the year 2000,

possibly as high as 5000 V (Ref. III-2, III-3, III-4). Although silicon con-

trolled rectifiers (SCRs) are already available at voltages up to 5000 V, their

turn off requirements limit their applications I (Ref. III-5). The development

of high voltage, high power semiconductor switches should decrease the mass of

converters and improve their efficiency. It should be noted that the technology
advances predicted here and throughout this report are highly speculative since
a key driver is development funding and it varies considerably.

Based on this technology assessment a set of component characteristics were

developed that were deemed to be consistent with future PMAD designs. This data

served as a foundation for the actual component model development. Models were

generated using a six step process: (I) the specific stages in a component were

identified; (2) mass breakdowns for these stages were obtained by studying compo-
nent designs or hardware; (3) projected technology advances were considered and

used to adjust these mass breakdowns to yield mass values consistent with the

2000 to 2010 time period; (4) these adjusted mass breakdowns were used as bench-

marks and they were extrapolated from to generate mass tabulations at other oper-

ating points; (5) equations were generated to fit these points using curve fit-

ting techniques; and (6) selected equations were assimilated to form a complete

model. This entire process is based on the theory that the mass of a power con-

ditioning component can be estimated by summing the masses of its power process-

ing stages and associated hardware (this approach is treated in detail in the
next section).

The tables contained in Appendix A illustrate many of the model development

steps. Referring to the "Chopper Mass Breakdown Tables" for example, note that
some of the mass breakdowns are shaded. These shaded areas depict power process-

ing stage mass breakdowns derived from present element masses. They were gener-

An SCR cannot be turned off by simply removing the gate signal, the

current flow must either be interrupted or forced to flow in the oppo-

site direction. For ac switching or rectification, these turn-off

requirements are acceptable because the current naturally crosses

through zero each half cycle. However in a DC application, such as an

inverter switch, they aren't usually acceptable.

5



ated by listing the massesof the present elements in a stage and incorporating
gains expected from technology advances. Becauseit was easier to estimate the
improvements for a single item, each element in a stage was evaluated individu-
ally. Thesederived massbreakdownsserved as benchmarksfor subsequent extrapo-
lations. To generate massbreakdownsat other operating points each of the oper-
ating parameters such as power, voltage, efficiency, and frequency were consid-
ered separately. The massimpact that a change in an operating parameter had on
a stage was again evaluated element by element. This matrix like approach, where
one axis represented the elements in a stage and the other axis the change in
operating parameters, was used because it simplified the extrapolation process
and resulted in greater confidence in the values.

3.1 Power Conditioning Stages Approach

Power conditioning components tend to have common stages. For example, the

dc/dc converter, the dc/ac inverter and the ac/ac frequency converter, each have

a chopper stage. The interconnection and control of these stages determine the

function and operation of the total converter. Hence, one can define the stages

contained in a specified converter, calculate their individual masses, and then
add these values to the control and monitoring hardware mass, the enclosure mass

and the thermal management and radiator subsystem mass to determine the total

mass of a complete converter.

The masses of power conditioning components were estimated by defining the

stages in a component and generating a mass equation for each one using the prev-

iously described six step process. Much of the information used to develop these

equations was obtained from SSF documentation. These designs were considered to

best typify proposed lunar base hardware and represent the latest space based

components, operating at the highest steady state power levels. Since the lunar
base will be erected about ten years in the future, mass figures were modified

to incorporate projected technology advances. Equations were then developed to
determine the mass of ancillary hardware such as controllers, data interface mod-

ules and monitoring sensors. The masses of the individual stages and ancillary
hardware are summed to determine the total mass of the electronics related ele-

ments contained in the component. Based on this mass and a factor computed for

the density of electronics, the surrounding enclosure and selected thermal man-

agement hardware mass was estimated. These values are then summed to obtain the

component mass. Finally, a mass is computed for the radiator and added to this

component mass to obtain the total mass of the power conditioning component.

Since the power conditioning component models consist of interconnected

stages, the easiest way to explain the model formulation is to address the models

for the component stages individually. The equations used to estimate the masses

of these stages will be further broken down and these parts will be discussed

separately. This should allow the supporting rationale to be presented in a
clearer manner. Since most effects can not be easily explained or justified

using mathematical procedures, graphs will be used liberally to display the
effects that have been noted as operating conditions are varied over the ranges

being considered. The equations were developed by studying technical reports,

program documentation, textbooks, design manuals, and vendor catalogues. These
sources will be identified during the model discussions.



3.1.1 Chopper Stage Model

The chopper stage is utilized to convert dc into ac, and it is included in
the inverter, dc/dc converter and frequency converter models. A chopper can fol-

low several different topologies, depending on the design requirements. These

chopper stage equations, however, are general in nature and only intended to pro-

vide rough mass estimates for component comparison purposes. For more accurate

mass estimates and topology comparisons, specific designs should be generated by

a circuit designer.

The chopper section is composed of switch modules, each containing a semi-

conductor switch and a snubber circuit; and ancillary hardware, consisting of

inductors, capacitors, diodes, and resistors. The snubber circuitry facilitates

switching and mitigates the voltage and current spikes that occur during switch-

ing. The switch modules operate together to switch the incoming dc voltage and

generate an alternating voltage. Precise, synchronized switching is required to

provide a constant frequency and fine voltage regulation. Mass breakdowns for

a present and projected switch module capable of handling ] kWe are shown in

Table 1. A ] kWe power level was selected to develop a per unit basis for later

mass extrapolations. The present mass values were estimated from briefing pack-

ages prepared by TRW, Ford Aerospace, and Rocketdyne in support of SSF, and a
power MOSFET catalogue (Ref. Ill-l, Ill-6, Ill-l, Ill-B). The projected mass

breakdown originates from articles discussing future power conditioning component

developments and discussions with experts in the field of power conditioning

(Ref. Ill-4, Ill-g, Ill-t0). It was used as a basis for subsequent equation

development.

Table I
I kWe Switch Module Mass Breakdown

Present

Hardware Element Mass (qrams)

Active Switch Element 7

Snubber Circuitry 20

Heat Sink, Thermal Management 48

Gate Drive Circuitry 25

Switch Control Logic 20

Packaging and Mounting 40

Total Switch Module 160

Projected

Mass (grams)

5

]5

35

15

5

100

Advances in switch fabrication techniques, better switch geometries, and

continuing size reductions in integrated logic circuitry should reduce the mass

of switch elements. Much of the development expended on semiconductors is

expected to be aimed at improving their efficiency because the main limiting
factor in electronics mass reduction is the inability to remove waste heat (Ref.

Ill-t1). The increasing use of graphite based fibers in heat sinks should

facilitate heat removal and cut mass because graphite has superior heat transfer

characteristics and its specific weight is about two-thirds that of aluminum.



In addition to the switch module mass, ancillary hardware is required in
the chopper circuit itself to manageinternal energy flows. A parallel resonant
topology has a tank circuit consisting of an inductor and capacitor that stores
energy to facilitate current circulation and switching; a current fed push-pull
topology requires an input inductor to maintain a constant current supply. Mass
gains in this area are expected to be relatively small. Alternate magnetic
materials are being developed, but they often times are brittle or exhibit poor
thermal conductivity. This limits their usefulness in high power applications
and proven materials such as supermalloy are expected to remain the standard.
Capacitor development continues to yield improvements in energy storage density
and reliability, but progress is fairly slow. Overall the mass of the tank
hardware in a chopper circuit was expected to decline about 10%.

The chopper massbreakdownscontained in this report are based on a paral-
lel resonant Maphamconverter topology. This topology was originally selected
for use in the main inverter units when the SSFpower system utilized a 20 kHz
PMADsystem. It is well suited for high frequency applications and exhibits a
low mass and high efficiency. The resonant operation of this converter also
allows zero current switching. This greatly reduces switching losses, switch
stress, and switching induced noise. The lower switching noise and sinusoidal
nature of the waveform improves the output power quality and reduces filtering
demands(Ref. Ill-|2). Becausethe Maphamresonant topology uses two sets of
switches to switch the input voltage, the full input voltage is not impressed
across a single switch. This feature and the reduced switching stress should
facilitate a high voltage chopper design. However,becausethere are two switch-
es in the conduction path, the switch voltage drop is doubled. This is a serious
drawback in a low voltage converter. Onereason the present SSFdc/dc converter
units utilize a current fed push-pull topology is because of concerns raised
about the technological maturity of the resonant converter. The resonant con-
verter has a higher parts count and tends to be more complex (Ref. Ill-13).
Resonantconverter development has been rapid, however, and these equations are
intended for componentsanticipated to be available after the year 2000. This
is adequate time to fully develop and verify the operation and reliability of a
resonant converter.

For a present I kWe, 20 kHz chopper stage, the mass of the chopper tank
hardware was judged to be 330 grams. Anticipated circuit and componentimprove-
ments should drop this value to 300 gramsby the year 2000. A full wave chopper
stage based on a Maphamresonant topology uses four 500 watt switch modules, each
weighing 50 grams, and tank hardware estimated to weigh 300 grams, the total mass
of a future I kWechopper is projected to be about 500 grams.

The subsequent paragraphs will explain the development of the single-phase
and 3-phase chopper stage equations in detail. The variables that will be used
during this discussion are shownin Table 2. Whena factor is being discussed
it will be underlined. Graphs will accompanyeach section to illustrate the
parameters that have been incorporated into the equations. Chopper massbreak-
downtables are located in Appendix A on pagesA-] and A-2. The values in these
massbreakdownswere mainly generated from information obtained from NASALeRC,
General Dynamics, and TRW(Ref. Ill-t1, Ill-14, Ill-15).
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ICSM

3CSM

CSE Chopper Stage Efficiency (96%)

CSAM Chopper Stage Available Modules

CSRM Chopper Stage Required Modules

CSPo Chopper Stage Power Output (kWe)

CSV_ Chopper Stage Voltage Input (Vdc)

CSF Chopper Stage Frequency (kHz)

Table 2

Chopper Model Variable Definitions

Single-Phase Chopper Stage Mass

3-Phase Chopper Stage Mass

Mass Coefficient

ICSM=O. 39* ((EXP(O.025/( I-CSE )))/1.86 )*(CSAM/CSRM )*CS Po*((CSPo/CSRM) "°'°s

• (CSVz/(CSV_- 2))7"EXP (CSV_/40000)* (20/CS F)°'4s*EXP(CSPo°-I*CSF/160) )

3CSM=O .4*( (EXP (0.025/( I-CSE)))/I. 86 )*(CSAM/CSRM)*CSPo* ((CS Po/CSRM) °'°s

•(CSV,/( CSV_-2))7*EXP(CSV_/40000 )*(20/CS F)°'_s*EXP(CS Po°"I*CSF/160 ))

To calculate an appropriate value for the chopper stage mass coefficients,
the equations were calibrated to yield values consistent with the above I kWe

mass breakdown and actual component designs (Ref. III-6, III-7, Ill-16).

Efficiency Factor

]CSM=O

3CSM=O

.3g*((EXP(O.O25/(I-CSE)))/I.86)*(CSAM/CSRM)*CSPo*((CSPo/CSRM) "°.°s

(CSV_/(CSVx-2))7*EXP(CSV_/4OOOO)*(20/CSF)°'_s*EXP(CSPo°'I*CSF/160))

.4*((EXP(O.O25/(I-CSE)))/I.86)*(CSAM/CSRM)*CSPo*((CSPo/CSRM) "°-°s

(CSVI/(CSVI-2))7*EXP(CSVI/40000)*(20/CSF)°'4s*EXP(CSPo°'I*CSF/160))

The factors underlined above estimate the changes in specific weight that

occur over a range of chopper efficiencies. Within reason, the interconnecting
wiring and ancillary hardware resistive losses, and the switch conduction losses

can be reduced by increasing the size of the wiring and ancillary hardware, and

the active switch element area and snubber component ratings. If the switch

losses are always less over the full operating range, it should be possible to

reduce the heat sink mass. By gauging the effect of power losses on individual

elements within a switching module, chopper mass estimates were developed for
efficiencies ranging from 95 to 97%. An efficiency factor was then calculated

and incorporated into the chopper mass equation. Figure 1 shows a graph of the

resulting specific weight versus efficiency values that were developed with this

approach. Note that the depicted chopper efficiency range is relatively narrow.
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Chopper efficiencies higher than about 97% are not considered practical due to
limitations in circuit topology designs and switch fabrication techniques. Lower
efficiencies are undesirable because of the increased thermal management and
radiator mass. However, low operating voltages cause addition losses and result
in efficiencies poorer than those shown. This will be explained further in the
discussion pertaining to the voltage factors•

Redundancy Factor

ICSM:O. 39* ((EXP (O.025/( I-CSE )))/ I.86 )*(CSAM/C SRM) *CSPo* ((CSPo/CSRM) °•°5

*(CSVl/(CSV,-2) )7*EXP (CSV_/40000)* (20/CS F)°'4s*EXP(CSPo°'I*CSF/] 60) )

3CSM=O. 4* ((EXP (0.025/(I- CSE) ))/I.86)* (CSAM/CSRM)*CSPo* ((CSPo/CSRM)°"°5

*(CSV _/(CSVl-2))7*EXP (CSV 1/40000 )*(20/CS F)o.4s,EX P(CS Po°•I*CSF/160 ))

The redundancy mass impacts that will occur for this stage when modules are

added to enhance reliability are reflected in the above factor. This redundancy

factor does not include the increased system control and monitoring requirements
and their associated mass. The "available modules" value is the actual number

of modules present in the component; the "required modules" number is the actual

number of modules required to achieve full output power. If a design requires

4/3 redundancy to meet the reliability requirements, each channel will be rated
to carry 33% of the power. 4 channels are available, but only 3 channels are

needed to supply full power. The fourth channel represents the mass penalty

incurred in this particular stage to achieve a higher reliability.

Power Level Multiplier

ICSM=O

3CSM=O

•39* ((EXP(0.025/( I-CSE) ))/1.86)* (CSAM/CSRM)*CS___P_oP*((CSPo/CSRM) "°'°s

(CSV_/( CSVz-2))7*EX P(CSV _/40000 )* (20/CSF )o.4s,EXp(CSPoo.I,CSF/160 ))

•4" ((EXP(O. 025/(I-CSE) ))/I.86) *(CSAM/CSRM) *CS__SP_oP*((CSPo/CSRM)-o.os

(CSV_/(CSV z-2) )7*EXP (CSV_/40000)* (20/CSF) °'4s*EXP(CSPo°'_*cSF/160) )

The equations can be used to calculate the mass or specific weight of the

chopper. When the above multiplier is included, the value that results is a

chopper mass estimate. To obtain the specific weight of the chopper, remove this

multiplier.

Power Level Factor

ICSM:O.39*((EXP(O.O25/(I-CSE)))/I.86)*(CSAM/CSRM)*CSPo*(CSI____._o/CSRM) "°'°s

*(CSVx/(CSVI-2))7*EXP(CSVl/40000)*(20/CSF)°'4s*EXP(CSPo°'I*CSF/160))

3CSM-O.4*((EXP(O.O25/(I-CSE)))/I.86)*(CSAM/CSRM)*CSPo*(CS_____o/CSRM) "°'°s

*(CSV_/(CSVz-2))7*EXP(CSVz/40000)*(20/CSF)°'4s*EXP(CSPo°'I*CSF/160))

As the power level of the chopper increases, certain economies of scale

present themselves and allow a reduction in specific weight. Although, the

active switch element, snubber circuitry, and thermal management hardware sizes

will increase nearly linearly with power level, the mass of the gate drive cir-
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cuitry and switch control logic will rise at a slower rate. This causes switch
module specific weights to decline as power levels rise. The specific weight of
the tank hardware also declines slowly as the power level rises because the
inductors, capacitors, diodes, resistors and interconnecting wiring forming this
subsystemcan be fabricated and configured moreefficiently. Componentscan also
be packagedmoreeffectively at higher power levels, further reducing the packag-
ing volume and mounting mass.

The massesof individual elements of a single-phase chopper were extrapo-
lated to generate massestimates for a complete unit at power levels ranging from
0.5 to 100 kWe. Basedon these massestimates, it wasconcluded that the specif-
ic weight of a single-phase chopper would decline at the 0.05 power as power
level rose. The results of this evaluation are illustrated in Figure 2.

A 3-phase chopper consists of three single-phase choppers operating in uni-
son. Assuminga dc link resonant converter is employed, each phase will require
its own resonant tank hardware. This is necessary to generate three separate
waveforms, each offset 120 degrees from the other. Power handling devices can
not be shared betweenphases, only the control hardware is common.3-phase chop-
per massestimates were calculated by summingthe massesof three single-phase
choppers, each assumedto be processing exactly one-third of the power. Separate
gate drive circuitry was assumedfor each switch, but the switch control logic
was integrated into a single unit to ensure synchronized operation and facilitate
voltage regulation and frequency control. 3-phase chopper massestimates were
generated for power levels ranging from 10 to 250 kWe. These estimates indicated
the specific weights of 3-phase choppers also decline at the 0.05 power as power
levels increase. The specific weights of 10 to 250 kWesingle- and 3-phase chop-
pers are compared in Figure 3 at two resonant frequencies.

The required numberof modules is also included in this segment. Amodular
design approach consists of multiple modules, each designed to process a percent-
age of the total assembly output power. For this reason, the specific weight of
each chopper is calculated at the power level that that particular module is
operating at and not the power level of the complete assembly.

Voltage Level Factors

ICSM=O. 39* ((EXP (0.025/( 1-CSE )))/I.86) *(CSAM/CS RM)*CS Po*((CSPo/CSRM)-o.os

•CLC_SVx/(CSV_-2_____*EXP(CSV _/40000 )*(20/CSF )o.4s,EXP (CS Po°"I*CSF/160 ))

3CSM=O. 4* ((EXP (0.025/( I-CSE) ))/i.86)* (CSAM/CSRM)*CS Po*((CSPo/CSRM)-o.os

• (CSV_/(CSVx-2))7*EXP (CSV_/40000)* (20/CSF) °'4s*EXP (CSPo°'1*CSF/160) )

It was necessary to include two factors to cover the full voltage range

that will be encountered by a chopper. The first, "(CSVJ(CSVt-2)) 7'',addresses

the influences on power conductor and switch mass as the voltage level declines.

The second, "EXP(CSVI/40000)", addresses the mass increases occurring as voltages
increase.

Since conduction losses are calculated with the equation 12R, and current

levels rise as voltag_ declines, the chopper efficiency will be poorer at lower

12
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voltage levels 2. In most designs, these higher losses are partially offset by

lowering the resistances of circuit elements. To accomplish this the cross sec-

tional areas of the conductors and switches must be increased, which causes their

mass to increase. To obtain proper mass estimates for low voltage choppers, the

efficiency parameter that is input into the chopper module should be decreased

in accordance with Table 3. Using the values shown here, smooth specific weight

versus input voltage curves are generated for resonant converter chopper designs.

These values reflect the increase in mass and reduction in efficiency that occurs

at lower voltages. The specific weight curves generated with these values are
shown in Figure 4 for 0.5 and ] kWe power levels.

Table 3

Efficiency Corrections for Low Voltage Chopper Mass Estimates

Input
Voltage

(Vdc)
120

II0

i00

90

80

70

60

50

40

30

20

Resonant Chopper

Input Efficiency

(percent)

96.00

96 O0

95 97

95 93

95 87

95 76

95 63

95.40

95.07

94.40

92.00

High voltage chopper designs will require alternate design approaches.

Currently metal-oxide-semiconductor field-effect-transistors (MOSFETs) are

utilized most often for chopper switches, although MOS controlled thyristors
(MCTs) are expected to become prominent in the future due to their lower losses,

and higher voltage and power capabilities (Ref. Ill-g, Ill-]O, Ill-]7). To
switch very high voltages, the switch modules will need to be connected in

series. Theoretically, since the voltage across a single module is not in-

creased, the insulating requirements and mass of the individual modules are un-

changed. In practice, this probably will not be true. Added hardware will be

needed to force the switch modules to voltage share and limit parasitic capaci-

The equation 12R also applies in high frequency applications, but the

skin effect drives the effective resistance of the conductors up. This

increased resistance can be partially offset by employing alternate
conductor constructions such as Litz wire, but mass and thermal conduc-

tion penalties are incurred. For 20 kHz designs a typical guideline is
that the ac resistance of a conductor is 1.3 times the dc resistance.

15
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tance. Even with this added hardware, the insulation and switch ratings may need

to be increased to tolerate uneven or improperly applied voltages. It is expect-

ed that the switch synchronization problems that are a concern in any chopper

design will be exacerbated in a high voltage design. Unfortunately, little

information is available on actual design techniques since there is not much

demand for a high voltage chopper at the present time and very little space
suitable hardware is rated for high voltage applications.

In fact, only one very high power design is known to be currently in pro-

gress. General Electric is evaluating a 1MWe inverter design for NASA (Ref.

Ill-18). It uses amodule containing four parallel strings, each containing 100

amp MCTs. This module is rated for 200 amps total. Each string is composed of

ten 1000 volt MCTs stacked in series to provide a 5000 volt switching potential.

Based on the design results noted to date, the operating limits of the composite

assembly will be lower than the sum of the individual parts. Topology and com-

ponent design modifications are necessary to insure proper voltage and current

sharing between MCTs. These constraints result in size, mass, and loss penal-

ties. It will also be challenging to achieve synchronized switching with these

40 MCTs at high frequencies. Poor synchronization will lead to excessive losses
in the snubber circuits and result in a low switching efficiency. No mass

information was available at the present time, but its status will be tracked.

A survey of high power, high voltage MOSFET manufacturers indicates a

MOSFET device with a 5000 volt drain to source breakdown voltage, a 250 amp

current rating, and a 20 kHz switching speed is achievable by 1995-2000 (Ref.

III-2). Present literature states that MOSFETs with drain to source breakdown

voltages in excess of 1000 volts can be purchased (Ref. Ill-3). For this study,

it was assumed that switches with a 5000 volt breakdown voltage and a 20 kHz

switching speed will be available by 2000. The acceptable operating voltage for

a semiconductor device is approximately half the breakdown voltage; therefore,

two series connected solid state switches would be required in each switch module
to switch a 5000 Vdc voltage.

Based on the items previously discussed, the following observations were
made about high voltage chopper designs and masses. The data obtained to date

from the high power inverter study indicates high voltage designs will incur mass

penalties to insure voltage sharing and limit parasitic capacitance. The switch

ratings and insulation levels will probably need to be increased to guard against

potential voltage imbalances. Even power conditioning devices as rugged as

transformers rise in mass as voltage levels increase. It is expected that the

mass of a chopper will rise at a faster rate with voltage than a transformer

since its components tend to be much more sensitive to over voltage conditions

and voltage spikes. Based on this reasoning, the factor underlined in the above

equation was developed. Specific weight curves for high voltage chopper designs

obtained from this equation are shown in Figure 5 at 10, 100, and 250 kWe power
levels.

Frequency Factors

ICSM=O.39*((EXP(O.O25/(I-CSE)))/I.86)*(CSAM/CSRM)*CSPo*((CSPo/CSRM) "°'°s

*(CSV_/(CSVz-2))_*EXP(CSVx/40000)*(20/CSF)°'4s*EXP(CSPo°'I*CSF/160))

17
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3CSM:O. 4*( (EXP (0.025/(I-CSE) ))/1.86)* (CSAM/CSRM)*CSPo* ((CSPo/CSRM)-o.os

* (CSV ,/(CSV l-2))7,EXP (CSVI/40000) *(20/CS F)°'4s*EXP(CS Po°"I*CSF/] 60 ))

The masses of the chopper switches are relatively unaffected by changes in

frequency. However, the component values contained in the resonant converter

tank and the circuit parasitic reactances are a function of the resonant frequen-

cy. The resonant frequency of a resonant circuit is calculated by the equation:

27Ff=I/(L-C)°'s

Where: f = the resonant frequency in hertz
L = the circuit inductance in henries

C = the circuit capacitance in farads

From this equation one can see that the inductor and capacitor values, and their

associated masses, are a function of frequency. While this equation is correct,
it does not convey all the factors that must be considered in a converter design.

It indicates the mass of the tank hardware will change linearly in a direction

opposite to the frequency change. This is not entirely true. Other factors such

as parasitic reactances in the circuit and hysteresis and eddy current losses

must be considered. Depending on the resonant frequency, they may have a strong

influence on the converter design.

At low frequencies, parasitic reactances are small and hysteresis and eddy
current effects are minor. This allows more common, often lighter weight compo-

nent types and materials to be employed. Other converter topologies may also be

used because the mass increases occurring in the tank hardware of a resonant con-

verter may be unacceptable for low frequency applications. Pulse-width-modula-

tion (PWM) and push-pull topologies may be better. Assuming a designer selects

the topology that minimizes mass and considering the effects of frequency and

circuit parasitics, chopper mass estimates were generated at several frequencies.

These estimates were extrapolated from known designs and they are documented in

Appendix A. They were utilized to develop the frequency factors contained in the

chopper mass equations. Figure 6 compares the specific weights obtained with

these equations for single- and 3-phase designs at 10 and 100 kWe power levels
for frequencies ranging from I to 50 kHz. Note that the 3-phase design is

slightly heavier over the full frequency range due to its higher parts count.

As the resonant frequency rises, the effects of parasitic reactances and

hysteresis and eddy current losses become more pronounced and strongly influence

the converter design. They will largely offset supposed improvements and cause

the design to reach a point where further mass reductions can not be realized by

increasing the frequency. The product of power and frequency approaches a con-

stant value. This is the reason the mass of the chopper circuit levels out above

20 kHz and may actually begin to rise at frequencies beyond this point. Since

most of the available design information was based on 20 kHz and 40 kHz inversion

frequencies, the equations were calibrated to yield good results at these fre-

quencies. The single-phase resonant topology specific weight curves shown in

Figure 7 depict the strong influence frequency has on chopper mass and show the

specific weight of a chopper approaches a constant value of 0.38 kg/kWe as the

frequency and power level rises.
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Before leaving this subject, it should be noted that at high power and

frequency levels fewer switching devices are available and the sizes of resonant
tank elements may become impractical. Therefore, even if there is not any cir-
cuit limitation that precludes the use of a high resonant frequency, the avail-

ability of suitable parts may force the designer to settle for a lower frequency

design. To make higher operating frequencies practical, high power switching
devices that exhibit faster switching speeds are currently under development.

For example, the I-2 _sec switching times being projected for MCTs represent a

significant improvement in high power switching. Parasitic inductive and capaci-
tive reactances, though, will still drive the resonant frequency downward as

power levels rise. The point is: Even though the model will generate a mass
estimate for a high power chopper based on a high frequency, one must consider

whether the design is really practical. Table 4 is offered as aguide to assist
the model user in selecting inversion frequencies appropriate for future compo-

nent power levels.

Converter
Power Level

Under 500 Watts

500 to 5000 Watts

5 to 50 kWe

50 to 100 kWe

Greater than 100 kWe

Table 4

Resonant Converter Frequency Input Guide

Suggested Inversion

Frequency Limit

60 kHz

50 kHz

40 kHz

30 kHz

20 kHz

3.1.2 Inverter and Standard Transformer Models

Two types of transformers may be utilized in the lunar base PMAD system

depending on the architecture and user needs: inverter transformers that are an

integral part of a converter circuit, and standard transformers. These trans-
formers will be significantly different because the operating frequencies, and
waveform harmonic content are different for the two applications. For this

reason, it was necessary to create two model types to address the characteristics

of the two designs. The inverter transformer design will be presented first
because it tends to be more involved and cover a wider range of design consider-

ations. The standard transformer discussion will rely heavily on the information

and rationale previously presented in the inverter transformer section.

3.1.2.1 Inverter Transformer Stage Model

The inverter transformer stage is contained in the inverter, dc/dc convert-

er and frequency converter models. In an actual power conditioning component,
an inverter transformer follows a chopper section. It is used to step up or down

the input voltage, and/or to provide isolation between the input and output.

Although transformer design guidelines have been establi;ted to de_ with

most operating requirements; there are many practical design and materials limi-
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tations that continue to hinder transformer fabrication. These design difficul-
ties are more pronounced at higher frequencies; consequently, high frequency
transformer design techniques require more development. High frequency designs
proposed for high power and/or voltage levels are especially complicated. Howev-
er, established transformer design principles can provide insight into howthese
problems might be solved and in turn the evolution of transformer design. For
this reason, design manuals were frequently referred to to guide the equation
development (Ref. Ill-19, III-20, III-21). The variables that will be used in
the inverter transformer stage model discussion are shown in Table 5.

IITSM

31TSM

ITSE

ITSAM

ITSRM

ITSPo

ITSV I

ITSVo

ITSF

Table 5

Inverter Transformer Model Variable Definitions

Single-Phase Inverter Transformer Stage Mass

3-Phase Inverter Transformer Stage Mass

Inverter Transformer Stage Efficiency (99%)

Inverter Transformer Stage Available Modules

Inverter Transformer Stage Required Modules

Inverter Transformer Stage Power Output (kWe)

Inverter Transformer Stage Voltage Input (Vrms)

Inverter Transformer Stage Voltage Output (Vrms)

Inverter Transformer Stage Frequency (kHz)

The equations used to estimate the mass of single-phase and 3-phase trans-

formers are shown below. They will be discussed piece by piece to identify the

parts that correspond to specific parameters. The subsequent paragraphs will

explain the development of the factors and constants contained in these equa-

tions. The factor being discussed will be underlined and accompanying graphs

will be used to illustrate results and trends determined during this study.

Mass Coefficient

IITSM-I.27*((EXP(O.OO3/(I-ITSE)))/I.35)*(ITSAM/ITSRM)*ITSPo*((ITSPo/ITSRM) -o-_

*EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSF°'47+(ITSF/300)I-_)

3ITSM-2.75* ((EXP(O. 003/( I-ITSE) ))/I.35)* (ITSAM/ITSRM)* ITSPo* ((ITSPo/ITSRM)-o.2s

*EXP( ITSV,/2OOOOO)*EXP (ITSVo/200000)* ITSF'°-47+(ITS F/300)I"_)

The constants, "1.27" and "2.75", were determined by calibrating these mass

equations against the masses of known inverter transformer designs. They are

designed to yield acceptable mass estimates over the r_ng_s specified for each

of the input parameters. These constants are largely determined by the wave form
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factor 3 and are 10%larger than the corresponding constants contained in the
standard transformer discussion. Since the chopper rapidly switches a dc input
to fabricate an ac output, the inverter transformer input is not a smoothsinu-
soid and it exhibits manysquare wavecharacteristics. Square waves have a high
harmonic content; consequently, they generate higher losses in the transformer
core. Calculations and design procedures contained in design manuals indicate
an inverter transformer core must be sized 10%larger to lower the core flux
density and managethe added losses resulting from the square wave harmonics
(Ref. Ill-19, III-20, III-21).

Efficiency Factor

IITSM=I.27*((EXP(O.OO3/(I-ITSE)))/I.35)*(ITSAM/ITSRM)*ITSPo*((ITSPo/ITSRM) °'°8

,EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSF°47+(ITSF/300)1"4)

31TSM=2.75*((EXP(O.OO3/(I-ITSE)))/].35)*(ITSAM/ITSRM)*ITSPo*((ITSPo/ITSRM)°'2s

,EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSF°'47+(ITSF/300)I"4)

The factor underlined above is used to estimate the masseffects that will
occur whenthe transformer efficiency is changed. To reduce losses and increase
transformer efficiency, the flux density in the core is lowered and the resis-
tance of the windings is reduced. A lower core flux density will reduce core
losses; however, Faraday's law showsthe core effective cross sectional area must
be increased to compensate.

E=4BmAcNfxIOS (square wave)

Where: E = applied voltage (rms)
4 = square wave form factor
Bm= flux density in gauss

= core effective cross sectional area in cm2c= number of primary turns
f = frequency in kHz

This naturally increases core mass. To reduce the winding resistance and
losses, the winding conductor area must be increased. This can be seen by
referring to the equation used to calculate conductor electrical resistivity.

R=pl/A

Where: R = conductor resistance
p = volume resistivity (p_-cm)
l = length in cm
A = cross sectional area in cm2

To raise the transformer efficiency from 99%to 99.5%, transformer losses
would need to be cut in half. Core loss versus flux density tables contained in
transformer design manuals indicated a 25%reduction in flux density would reduce
losses 50%. To achieve this the core cross sectional area and associated mass

The form factor is the ratio of the root-mean-square value to the
average absolute value, averaged over a full period of the waveform.
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would increase 33%. To cut the winding losses in half, the conductor area would
needto double. This doubles the conductor mass. Summingonly these two effects
and using a ratio of about 2:1 for winding massto core masswith a 20 kHz trans-
former results in a transformer massincrease of about 75%. However, increasing
the core size further increases in the conductor massdue to the added length of
the turns; and the larger winding size will enlarge the core window. Clearly the
core and winding dimensions are interrelated; there are no closed form transform-
er design equations. After including estimates for these interdependent influ-
ences, a mass increase of 85%was obtained. The trends reflected by the result-
ing efficiency factor are shownin Figure 8 for 10 and 20 kHz frequencies and 10
and 100 kWetransformer power levels.

Redundancy Factor

]ITSM= I.27* ((EXP(O. 003/( 1-ITSE )))/1.35) *(ITSAM/ITSRM)* ITSPo* ((ITSPo/ITSRM)-o.oa

•EXP( ITSVz/200000)*EXP(ITSVo/200000)*ITSF°'47+(ITSF/300) 1.4)

3ITSM=2.75* ((EXP(O. 003/( 1-ITSE) ))/1.35)*( ITSAM/ITSRM)* ITSPo* ((ITSPo/ITSRM)-o.2s

•EXP(ITSV _/200000 )*EXP (ITSVo/200000) * ITSF°'47+ (ITSF/300 )1.4)

The above factor addresses redundancy mass impacts that occur to enhance

reliability. The available modules is the actual number of modules present in

the component; the required modules is the actual number of modules required to

achieve full output power. An example will illustrate. Assume a design requires
4/3 redundancy to meet the reliability requirements. This means each channel is

rated to handle 33% of the power and 4 channels are available. This factor shows

a 4/3 redundancy design will be 33% heavier. Only 3 channels are needed to

supply full power; the fourth channel represents the mass penalty incurred to
enhance reliability.

Power Level Multiplier

IITSM=].27*((EXP(O.OO3/(]-ITSE)))/].35)*(ITSAM/ITSRM)*IT_!SPoSP*((ITSPo/ITSRM) °'°8

*EXP(ITSV=/200000)*EXP(ITSVo/200000)*ITSF°'47+(ITSF/300) I"4)

3ITSM=2.75*((EXP(O.OO3/(I-ITSE)))/I.35)*(ITSAM/ITSRM)*I!S.P.oSP*((ITSPo/ITSRM) °'25

*EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSF°'47+(ITSF/300)I"4)

The equations can be used to calculate either transformer mass or trans-

former specific weight. When the above multiplier is included, the calculations

will yield the transformer mass. To obtain the transformer specific weight,

simply remove this multiplier.

Power Level Factor

IITSM:I.27*((EXP(O.OO3/(1-ITSE)))/I.35)*(ITSAM/ITSRM)*ITSPo*((ITSPJITSRM) "°'°s

*EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSF°'47+(ITSF/300)I"4)

31TSM=2.75*((EXP(O.OO3/(I-ITSE)))/1.35)*(ITSAM/ITSRM)*ITSPo*((ITSP_/ITSRM) °'zs

*EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSF°'47+(ITS_/300) 1"4)
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As transformer size increases, the core can be better utilized, and the
current density increased in the windings to reduce their cross sectional area.

These economies of scale result in a transformer specific weight reduction at
higher power levels. The "Standard Handbook for Electrical Engineers" indicated

the specific weight of a 3-phase transformer would decline by the 0.25 power with

power level (Ref. III-22). This was verified for 60 Hz transformers by referring
to the transformer masses contained in a vendor catalogue (Ref. III-23). This

factor was also assumed to hold for high frequency 3-phase transformer designs,
although there was not any mass information available to confirm it. The same

vendor catalogue showed the specific weight of a low frequency single-phase
transformer would decline by the 0.08 power with power level. Mass figures

obtained from another source indicated this factor also held true for high

frequency single-phase transformer designs (Ref. III-Ig). The specific weights

of single- and 3-phase transformer designs are compared in Figure g. This figure

shows that a I kHz single-phase transformer will weigh less than a 3-phase one

until a power level of about 100 kWe is reached. This value was projected from

information contained in a vendor catalogue and a transformer design handbook

(Ref. III-23, III-24). It was estimated that the mass cross over point for

higher frequency single- and 3-phase transformers occurs at a higher power level.

The mass gains achievable with a change from a single- to 3-phase design occur

mainly in the core. These gains are expected to be less at higher frequencies
because the core mass occupies a smaller percentage of the transformer mass.

With this assumption incorporated into the equations, Figure 9 shows that a
single-phase 20 kHz transformer design is more weight efficient below 250 kWe.

Figure ]0 shows only single-phase transformer designs and allows specific weight

comparisons at several frequencies over a wide power range. Figure 11 also

depicts single-phase designs, but it concentrates on the power levels and fre-

quencies expected to be used most often in inverter transformer designs.

The total power level is divided by the required number of modules. A

modular design consists of several modules, each designed to only process a

percentage of the total assembly output power. The specific weight of each
transformer must be calculated at the power level of the individual module and

not the complete assembly power level.

Voltage Level Factors

IITSM=I.27*((EXP(O.OO3/(I-ITSE)))/I.35)*(ITSAM/ITSRM)*ITSPo*((ITSPo/ITSRM) "°'_

*EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSF'°'47+(ITSF/300)I"4)

31TSM=2.75*((EXP(O.OO3/(I-ITSE)))/1.35)*(ITSAM/ITSRM)*ITSPo*((ITSPJITSRM) "°-2s

*EXP(ITSV_/2OOOOO)*EXP(ITSVo/2OOOOO)*ITSF°'_7+(ITSF/300)I"4)

The voltage factor development had to consider two viewpoints, the influ-

ence of insulation stress on transformer mass as voltage rises, and high voltage

transformer design limitations occurring as frequency rises. Only the insulation
stress effects will be addressed initially. It is mainly the volts per turn not

the terminal voltage that determines the stress placed on the insulation and con-
sequently its thickness. The thickness of the insulation can be calculated from

its dielectric strength, usually expressed in volts per mil. For typical opera-

ting ranges, the dielectric strength of most insulating materials is reasonably

constant regardless of the transformer frequency. This information indicates the

voltage mass effects occurring at low frequency also apply at higher frequencies.
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This observation is important since the information on high voltage transformers
is limited to low frequency designs. Low frequency, commercial transformer data

showed transformer specific weight rose slowly until voltage levels approached

20 kV. This is well above the 10 kV voltage level expected to be used for the
lunar base. The minor increase in specific weight was attributed to the addi-

tional insulation needed to prevent insulation breakdown between windings, and

the need for high voltage terminations. This added winding insulation will in-

crease the winding cross sectional area and necessitate a slightly larger core
window area. However, the impact is minor. In addition, the insulation mass is

a very small percentage of the total transformer mass, so it can increase sub-

stantially and the transformer mass will only change slightly. The information

obtained from this analysis was sufficient to develop a transformer voltage

factor, but it was not enough to know how to properly apply it. The voltage
factor determined at this point is shown for different transformer power levels

in Figure 12. It shows transformer mass will only rise about 5% when the primary
or secondary voltage is increased from 20 to ]0,000 Vrms.

It was previously stated that the volts per turn determined the insulation

thickness and that the dielectric strength of an insulating material is basically
independent of frequency. However, frequency does influence the calculated volts

per turn and this ultimately impacts the voltage characteristics of the complete

transformer. Referring back to Faraday's law and rearranging the terms, one can
see that the volts per turn is a function of frequency.

E/N:f(K, Bin,At,f)

Where: E = applied voltage (rms)
K = form factor constant

Bm = flux density

= core effective cross sectional area
number of primary turns

f = frequency

Because of nonlinearities in transformer design, particularly in core material

characteristics, the product of core cross sectional area and flux density can

not be linearly changed to accomodate an increasing frequency. This situation

indicates a designer will encounter voltage restraints as frequency rises. To
verify this conclusion, a transformer design analysis was conducted and trans-

former point designs were evaluated. They showed that the volts per turn will

increase significantly when moving from 60 Hz to 20 kHz, possibly enough to in-

crease the insulation level on the turns. Thicker insulation will lead to great-

er separation distances between the primary and secondary windings, and reduce

transformer coupling. This results in higher leakage flux. Because leakage flux
increases if additional winding insulation is needed and the effects attributable

to turn-to-turn capacitance rise with frequency, a high frequency transformer

tends to have more reactance. High voltage transformers have more turns, which

increases the total turn-to-turn or winding capacitance. Although these effects

are compounding, they probably are not enough to preclude the design of a high
voltage, high frequency transformer; however, they do complicate its design and
emphasize the need to minimize turn-to-turn capacitance.

It was already mentioned that a high voltage transformer has a higher wind-

ing capacitance; and transformer coupling is poorer if thicker winding insulation

is required. Leakage inductance also rises as the distance between the windings
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increases. To maximize transformer coupling and minimize leakage inductance, the

primary and secondary windings must be in close proximity. However, this is dif-
ficult to accomplish in a transformer that has a high voltage ratio because thick

insulation levels are required to prevent primary to secondary voltage breakdown.

Most loads require a relatively low voltage; therefore, the voltage will need to

be stepped down further in a system that uses high voltage transmission. This

forces the distribution transformers to utilize higher voltage ratios and leads
to higher leakage inductance.

Oscillations in the power system, a phenomenon known as ringing, may result

from the leakage capacitance and inductance present in high voltage transformers.

Ringing occurs because the parasitic capacitive and inductive reactances transfer

energy back and forth during operation and after turn off until it is damped out

by element resistances. This increases transformer losses and may lead to damage
if high voltage spikes result. Ringing is frequency related because the effects

attributable to parasitic capacitive and inductive reactances grow as frequency
rises. Power may also be a factor because it may be more difficult to limit

stray capacitance and inductance due to fabrication constraints resulting from
the transformer's larger physical size.

Ringing limits the acceptable voltage ratio of the transformer. In a dis-

cussion with John Beiss, he indicated the step ratio of a present 20 kHz trans-

former is probably limited to about 6 or 7 due to ringing. However, a transform-

er design generated by Space Power Incorporated exhibited a voltage ratio of 10,

180 divided by 18 Vrms. Its demonstrated efficiency of 98.2% indicates this step

ratio is feasible, although it will be harder to achieve good operating charac-

teristics at higher voltages. Commercial transformer data indicates a step ratio

of 145 is obtainable with a 60 Hz transformer. Using these two values, an empir-
ical relationship was developed to estimate reasonable step ratios for transform-

ers at several different frequencies. This relationship is shown below and it

was used to generate the values shown in Table 6. This table is only offered as

a guide; its main intent is to point out the need to include step ratio effects

when evaluating a high voltage power transmission design. It shows that it may

be necessary to connect transformers in series to utilize a high voltage trans-

mission system with input or output components that require fairly low voltages,

especially if high frequency distribution is employed.

Where:

SR=39.7,f -°-46

SR = acceptable step ratio

f = frequency in kHz
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Table 6

Transformer Step Ratio Guidelines

Transformer Suggested

Frequency Step Ratio

(kHz) Limit

0.060 145

0.070 135

0.400 60

I 40

5 19

10 14

15 11

20 10

25 9

30 8

35 8

40 7

45 7

50 7

Frequency Factors

IITSM=].27*((EXP(O.OO3/(I-ITSE)))/I.35)*(ITSAM/ITSRM)*ITSPo*((ITSPo/ITSRM) °'°s

*EXP(ITSV_/200000)*EXP(ITSVo/200000)*ITSFD'47+(ITSF/300) 1"4)

31TSM=2.75*((EXP(O.OO3/(I-ITSE)))/I.35)*(ITSAM/ITSRM)*ITSPo*((ITSPo/ITSRM) °'2s

*EXP(ITSV_/2OOOOO)*EXP(ITSVo/2OOOOO)*ITSF°'_7+(ITSF/300) I"4)

Transformer core mass declines with increasing frequency. Faraday's law

shows the flux density required to generate a voltage is lower at a higher fre-

quency. Because the flux density is lower, the transformer core volume and mass

are reduced. Winding mass also declines because the mean length of the turns is
less. However, core mass does not decrease linearly with frequency as Faraday's

law appears to indicate. Alternate core materials must be employed at higher

frequencies to hold down losses. While these materials are more efficient, they

must be operated at lower flux densities. For transformer operating frequencies

ranging from 10 to 60 kHz, the selected core materials might progress from 50-50
Ni-Fe, to Permalloy, to Supermalloy, to Metglas. For this materials progression,

the operating flux density will roughly decline from about 10,000 to 2,000 Gauss.
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In addition to material limitations, other factors must be addressed during
a transformer design. Thermal managementconsiderations maylimit howmuch the
core size can be reduced. The surface area of a transformer must be sufficient
to conduct away generated heat. At very high frequencies, roughly above 50 kHz,
another set of effects begins to dictate the size of a power transformer core.
The eddy current and hysteresis losses becomehigh enough to actually drive the
core volume and mass upward. Hencethe optimum inverter transformer frequency
typically lies between 20 and 40 kHz. At high power levels, 50 kWeand above for
example, the preferred frequency is probably near 20 kHz. For power levels below
about 5 kWe, the optimum frequency is most likely near 40 kHz.

To determine how transformer mass declines as frequency is increased,
inverter transformer massestimates were examinedat 1, 2, 5, ]0, 20, 40, and 60
kHz (Ref. III-6, Ill-19, III-25). Based on these designs, the massgains occur-
ring as frequency is increased are shown in Figure 13 for several power levels.
Figure 14 concentrates on the frequencies envisioned to be used for most lunar
base inverter transformer designs. It showsthe optimumdesign frequency shifts
downwardas the transformer power level rises. This reflects a feature that has
been incorporated into the transformer massequations.

3.1.2.2 Standard Transformer Stage Model

The standard transformer stage will be contained in the transformer, and

transformer/rectifier models. Standard ac transformers will be used in ac power

transmission systems primarily at the user end to step down a high transmission
voltage to a level suitable for secondary distribution. Standard ac transformers

may also follow an alternator or inverter output in certain cases. However, this

will not be as common because alternators can provide nearly any voltage desired

and inverters and frequency converters will probably contain their own integral

inverter transformer stage. Transformers following an alternator will experience

frequencies less than 5 kHz. If the system utilizes inverters or frequency con-

verters to change the characteristics of the power source, the transformers will

probably be designed for frequencies between 10 and 20 kHz. The type of ac wave-

form encountered should be a smooth sinusoid with a low harmonic content. A pure

sinusoid minimizes transformer core losses because the added eddy current and

hysteresis losses resulting from high frequency harmonics are not present.

Because a fine transformer design manual existed, especially for low

frequency transformer designs, it was frequently referred to to assist in the

equation development (Ref. III-24). The variables used in the standard trans-
former stage model discussion are shown in Table 7.
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Tab1 e 7
Standard Transformer Model Variable Definitions

ISTSM Single-Phase Standard Transformer Stage Mass

3STSM 3-Phase Standard Transformer Stage Mass

STSE Standard Transformer Stage Efficiency (98%)

STSAM Standard Transformer Stage Available Modules

STSRM Standard Transformer Stage Required Modules

STSP o Standard Transformer Stage Power Output (kWe)

STSV x Standard Transformer Stage Voltage Input (Vrms)

STSV o Standard Transformer Stage Voltage Output (Vrms)

STSF Standard Transformer Stage Frequency (kHz)

The equations used to estimate the mass of single-phase and 3-phase stan-
dard transformers are shown below. Only the mass coefficient will be discussed
here since the rest of the factors are identical to those contained in the sec-

tion on inverter transformers. To see how the specific weight or mass of a stan-

dard transformer changes with efficiency, power level, voltage, and frequency

refer to the graphs contained in the inverter transformer section and subtract
10% from each value. The shape of the curves will be identical for both designs,
the standard transformer curves are simply shifted downward a slight amount.

Mass Coefficient

1STSM=l.]5*((E×P(O.OO3/(1-STSE)))/].35)*(STSAM/STSRM)*STSPo*((STSPo/STSRM) °'°8

*EXP(STSV_/2OOOOO)*EXP(STSVo/2OOOOO)*STSF°'4Z+(STSF/300) _'4)

3STSM=2.5*((EXP(O.OO3/(I-STSE)))/I.35)*(STSAM/STSRM)*STSPo*((STSPo/STSRM) °'2s

*EXP(STSV_/200000)*EXP(STSVo/200000)*STSF°'47+(STSF/300)I"4)

The constants, "1.15" and "2.5", were determined by calibrating these mass

equations against the masses of standard transformer designs--minus their enclos-
ures--contained in vendor catalogues (Ref. III-23). Initially, an individual

might feel the mass of a terrestrial transformer would be heavier than a space-
based transformer. However, the masses of low frequency commercial and space-

based transformers were felt to be comparable. Most of the transformer mass is

concentrated in the transformer core and windings, and this will be nearly equiv-

alent in both designs. Because the space-based transformer mounting hardware

needs to be stronger than similar earth-based mounting hardware to withstand the

launch environment, the mass reductions possible by using alternate materials and

space type packaging approaches will be largely offset. Terrestrial transformers

mainly rely on convection for cooling, a space-based unit must include thermal

management hardware arLduse conductlon. Finally, the enclosure mass is calculat-

ed by a separate algorithm and not included in this equation.

38



Theseconstants are designed to produce reasonably accurate massestimates
for the specified input parameters contained in the componentmodels. They are
10%less than those shownin the inverter transformer section because the wave
form factors of the power inputs differ. The waveform encountered by a standard
transformer is a smooth sinusoid with a low harmonic content. A pure sinusoid
minimizes transformer core losses because the addededdy current and hysteresis
losses resulting from high frequency harmonics are not present. The square wave
input of an inverter transformer has a high harmonic content; consequently, it
generates higher losses in the transformer core. The design equations contained
in design manuals indicate a standard transformer core can be 10%smaller due to
these improved waveform characteristics. (Ref. III-Ig, III-20, III-21).

3.1.3 Rectifier Stage Model

The rectifier stage converts ac into dc. It is contained in the rectifier,

transformer/rectifier, dc/dc converter, and frequency converter models. Two

basic operating types of rectifiers are available, diode and switching. The

diode rectifier is a static device that simply converts ac into dc. The switch-

ing rectifier is essentially a simplified chopper operating in reverse. Since
it uses active switching devices such as SCRs or MOSFETs it can regulate the

output voltage. SCRs accomplish this by adjusting the commutation angle, the

point at which the switch is turned on to allow conduction. MOSFETs typically

use PWM techniques. The equations presented in this section are only valid for

diode rectifiers, equations should be developed for switching rectifiers in

subsequent tasks. The rectifier stage equations presented here are only intended

to provide rough mass estimates to facilitate component comparisons. For more

accurate mass estimates, specific designs should be generated by a circuit

designer.

The rectification stage consists of a diode network. Mass breakdowns for

a present and projected diode capable of handling I kWe are shown in Table 8.

Note that this breakdown is similar to the previous switch module breakdown con-

tained in the chopper section. The main differences are: the snubber circuitry,

gate drive circuitry, and switch control logic have been removed since diodes are

not active switching devices; and the mass of the packaging and mounting hardware
has been adjusted downward because there are fewer parts. Present mass values

were estimated from briefing packages prepared by Rocketdyne, Ford Aerospace, and

TRW in support of SSF (Ref. III-6, Ill-7, III-8). Projected mass improvements

were obtained from articles on future power conditioning component developments

(Ref. III-4, Ill-t0).

Table 8

] kWe Diode Module Mass Breakdown

Present

Hardware Element Mass (grams)

Active Switch Element 7

Heat Sink, Thermal Management 48

Oackag_ng and Mounting 20

Total Switch Module 75

Projected

Mass (grams)

5

35

15
55
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Twofull waverectifier configurations are available, a center-tapped full-
wave rectifier, or a bridge rectifier circuit. The center-tapped rectifier con-
struction is simpler, but bridge rectifiers appear to be moreattractive for high
voltage applications because the peak inverse voltage imposedacross each diode
is half the center-tapped case. Bridge rectifiers also makebetter use of trans-
formers. A center-tapped rectifier requires two I kWediodes, each weighing 55
grams; a bridge rectifier uses four 500 watt diodes, each weighing 28 grams. The
total massin each case is 110 grams. Basedon this analysis, the total massof
a future | kWerectifier is projected to be about 110 grams.

The subsequent paragraphs will explain the development of the single-phase
and 3-phase rectifier stage equations in detail. These sections will use the
format presented earlier in the chopper stage discussion since the items are
comparable in manyrespects. The variables that will be used during this discus-
sion are shown in Table 9. Rectifier mass breakdown tables are located in
Appendix A on page A-3.

IRSM

3RSM

RSE

RSAM

RSRM

RSP o

RSV l

Table g

Rectifier Stage Model Variable Definitions

Single-Phase Rectifier Stage Mass

Three-Phase Rectifier Stage Mass

Rectifier Stage

Rectifier Stage

Rectifier Stage

Rectifier Stage

Rectifier Stage

Efficiency (98.5%)

Available Modules

Required Modules

Power Output (kWe)

Voltage Input (Vrms)

Mass Coefficient

IRSM=O.I*((EXP(O.OO5/(I-RSE)))/I.4)*(RSAM/RSRM)*RSPo*(RSVx/(RSVt-2)) 6

*EXP(RSVt/80000)

3RSM=O.]]*((EXP(O.OO5/(]-RSE)))/I.4)*(RSAM/RSRM)*RSPo*(RSVx/(RSVx-2)) 6

*EXP(RSV_/80000)

To calculate an appropriate value for the rectifier stage mass coeffi-

cients, the equations were calibrated to yield values consistent with the above
I kWe mass breakdown and actual component designs (Ref. Ill-6, Ill-l).

The diodes comprising three single-phase full wave rectifiers are intercon-

nected to form a 3-phase full wave rectifier. Six diodes are required and each

processes a third of the power. The 3-ph<:se rectifier design was judged to be

slightly heavier because of the added number of diodes. This would probably
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enlarge the mounting area and increase the interconnecting wiring weight. Figure
15 compares the specific weights of single- and 3-phase rectifiers.

Efficiency Factor

IRSM=O.I*((EXP(O.OO5/(I-RSE)))/I.4)*(RSAM/RSRM)*RSPo*(RSVz/(RSV_-2)) 6

*EXP(RSVl/80000)

3RSM=O.II*((EXP(O.OO5/(I-RSE)))/I.4)*(RSAM/RSRM)*RSPo*(RSVI/(RSV_-2)) 6

*EXP(RSV_/80000)

The factor underlined above estimates the specific weight values associated

with a range of rectifier efficiencies. Within reason, the interconnecting

wiring and the diode conduction losses can be reduced by increasing the size of

the wiring and the diode die area. An improved efficiency allows a reduction in

the heat sink mass. The effect of power losses on individual elements within a

diode module were assessed to develop rectifier mass estimates for efficiencies
ranging from 97.5 to 99.5%. From this analysis, an efficiency factor was calcu-

lated and incorporated into the rectifier mass equation. Figure 16 shows a graph

of the resulting specific weight versus efficiency values that were developed

with this approach. Note that the depicted rectifier efficiency range is rela-

tively narrow. Rectifierefficiencies higher than about 99.5% are not considered

practical due to diode fabrication limitations. Lower efficiencies are undesir-

able because of the additional radiator mass. Because silicon diodes require a

forward bias voltage of about 0.7 V before they will conduct, their efficiency

is considerably less at lower operating voltages. This will be addressed later

in the section on voltage factors.

Redundancy Factor

IRSM=O. I*((EXP(O.005/( I-RS E)))/I.4)*{RSAM/RSRM) *RS Po* (RSVp/( RSVp-2))6

•EXP (RSVl/80000 )

3RSM=O. II* ((EX P(O.O05/( I-RSE)))/1.4) *(RSAM/RS RM) *RSPo* (RSVp/( RSV t-2))6

•EXP (RSV 1/80000 )

The above factor computes the redundancy mass impacts occurring when a mod-

ular design appro6ch is used to improve reliability. The "available modules"

number is the actual number of modules present in the component; the "required

modules" value is the actual number of modules required to achieve full output

power. If adesign requires 4/3 redundancy to meet the reliability requirements,

each channel will be rated to carry 33% of the power. 4 channels are available,
but only 3 channels are needed to supply full power. The mass of the fourth

channel is the penalty paid to obtain a higher reliability.

Power Level Multi plier

IRSM=O.]*((EXP(O.OO5/(I-RSE)))/I.4)*(RSAM/RSRM)*RS___P*(RSVx/(RSVx-2) )6

*EXP(RSVl/80000 )
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3RSM:O.II*((EXP(O.OO5/(I-RSE)))/I.4)*(RSAM/RSRM)*RS__oP*(RSV_/(RSV,-2)) 6

*EXP(RSV_/80000)

The equations can be used to calculate the mass or specific weight of the
rectifier. When the above multiplier is included, the value that results is a

rectifier mass estimate. To obtain the specific weight of the rectifier, remove

this multiplier.

A power factor was not included in the rectifier equation to improve the

specific weight at higher power levels. As the rectifier power level increases,
a slight reduction in specific weight may occur because it is possible to package

larger sized units more compactly; however, this minor effect was considered to
be to small to warrant the inclusion of an additional factor.

Voltage Level Factors

IRSM=O.I*((EXP(O.OOS/(I-RSE)))/I.4)*(RSAM/RSRM)*RSPo*(RSV_/(RSV_-2---L_

*EXP (RSV _/80000 )

3RSM:O. 11"(( EXP (0.005/(I -RSE) ))/I. 4)* (RSAM/RSRM) *RSPo* (RSVzZ-(_B._-2))6

*EXP (RSVI/80000

The voltage impacts on rectifier and chopper mass were judged to be simi-

lar; therefore, the approaches used to define the voltage factors are comparable.
Two factors are required to cover the full voltagerange expected to be experi-

enced by a rectifier. The first, "(CSVz/(CSVI-2))_", addresses the influences

on power conductor and diode mass as the voltage level oeclines. Ine secono,

,,EXP(CSVI/80000)" , addresses the mass increases occurring as voltages increase.

Two primary effects cause the rectifier efficiency to decline as the

voltage level is reduced: the bias voltage imparted across the diode, and the
conduction losses. Silicon diodes require a forward bias voltage of about 0.7

V before they will conduct. At lower voltage levels this bias voltage is a

larger percentage of the device voltage; therefor% the efficiency is reduced.
Conduction losses are calculated with the equation I:R. Since current levels rise

as voltage declines, the rectifier efficiency is poorer at lower voltage levels.
Methods are available to partially offset these losses, but they have associated

mass penalties. The resistances of circuit elements can be lowered by increasing
the cross sectional areas of the conductors and leads, but it causes their mass

to increase. Increasing the diode die area and reducing its current density will
lower the conduction losses, but a heavy mass penalty can be incurred. An alter-

nate approach is to replace these standard diodes with Schottky diodes, germanium

rectifiers, or bipolar synchronous rectifiers (Ref. III-26). Schottky rectifiers
have a lower forward voltage drop, but they generally are not as rugged. The

bias voltage of a germanium rectifier is about 0.3 V, but it is more limited in

temperature and has a lower breakdown voltage. The I-V characteristic of a bi-

polar synchronous rectifier is linear down to zero volts and it does not exhibit

a bias voltage; however, it requires a more complicated circuit for operation.

Due to these factors, the efficiency parameter input for rectifier stage

calculations should be decreased in accordance with T;ble 10. These values re-

flect the increase in mass and reduction in efficiency that occurs at lower volt-
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ages. These values will yield a smoothly increasing masscurve. The rectifier
specific weight curve generated with these values is shown in Figure 17.

Table I0

Efficiency Corrections for Lower Voltage Rectifier Mass Estimates

Input Voltage (Vrms) Input Rectifier Efficiency (percent)

120 98.50

110 98.50

100 98.48

90 98.46

80 98.42

70 98.36

60 98.30

50 98.18

40 98.00

30 97.75

20 96.50

Present diodes can withstand voltages up to 1600 V and diode assemblies are

available up to 4400 V. These may be adequate for most power conditioning needs

(Ref. III-27). Extremely high voltage rectifiers often utilize apancake config-

uration consisting of diodes stacked in series. Ideally, if the voltage across
a single diode is not increased, the insulating requirements and masses of the

individual diodes are not increased. This probably is not totally true in actual

applications. Because it is virtually impossible to guarantee a string of diodes

will always conduct simultaneously, some diodes will briefly experience higher

voltages. The insulation levels and diode ratings will need to be higher to

withstand these high voltage transients. Hence, a high voltage rectifier will
incur some mass penalties as voltage levels rise. Because a silicon rectifier

is more robust than a chopper, but less than a transformer; the mass gain occur-
ring with a rise in voltage is expected to fall in between these devices. Based

on this reasoning, the factor underlined in the above equation was developed. A

specific weight curve for a high voltage rectifier design obtained from this
equation is shown in Figure 18.

Frequency Factor

Although it may be necessary to incorporate fast recovery diodes in a high
frequency design, the effect of frequency on rectifier mass was considered to be

minor. In fact it may even be desirable to incorporate fast recovery diodes in

lower frequency designs to gain an improvement in efficiency. For these reasons,

it was not considered necessary to include a frequency factor in the equations.
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3.1.4 DC Filter Stage Model

The dc filter stage conditions the dc waveforms to achieve the power qual-

ity required by the system. Two dc filters may be required for a component, one

on the input and another on the output. Most components containing a chopper or
rectifier will require dc filtering; therefore, dc filter stages are contained

in the rectifier, dc/dc converter, and inverter models. Filtering mass is diffi-

cult to estimate. The power quality requirements for lunar or Mars base applica-

tions are vague or nonexistent, and the design of a filter is a complex process

that is heavily influenced by the circuit topology. The filter stage equations

presented here are generalized and only intended to provide rough mass estimates

to facilitate component comparisons. For more accurate mass estimates, power

quality requirements must be defined and specific filter designs generated.

A single-stage filter design was assumed to precede the chopper and follow
the rectifier. This configuration is relatively simple, consisting of a series

inductor and a parallel capacitor. Since the input to a chopper and the output

from a rectifier are periodically discontinuous and they have a high ripple con-

tent, filtering is needed to smooth the dc waveform and suppress voltage and cur-

rent spikes. The masses of the filter hardware preceding the chopper and follow-

ing the rectifier were assumed to be comparable because they are both performing
similar functions, providing energy to smooth the dc lines during discontinuous

conduction periods. Due to the approximations and inaccuracies already inherent
in these models, it was not considered practical to identify differences in the

two filter designs and develop alternate equations for both applications.

Presently, the mass of a filter following a I kWe, 120 Vdc single-phase

rectifier, designed to reduce the output ripple to I%, is 370 grams. This rec-
tifier was assumed to be after a chopper stage operating at 20 kHz. The ripple

frequency of a 3-phase rectifier is three times higher than a single-phase

design. This decreases the amount of energy that must be stored in the filter
hardware and reduces the filter mass. Consequently, the mass of a dc filter

following a 3-phase rectifier also designed to reduce the output ripple to I% is

125 grams. Fabrication advancements should reduce the single- and 3-phase dc
filter masses to 330 and 110 grams respectively by the year 2000.

To develop the dc filter stage mass equations, the previous power condi-

tioning model analyses by Gilmour, Moriarty, and TRW were referred to for guid-

ance (Ref. II-1, II-2, III-28). The equations developed by TRW under contract

NAS3-19690 were especially valuable since they allowed dc filter masses to be
calculated for numerous conditions. The variables that will be used through out

the dc filter stage model discussion are shown in Table 11.
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1FSM

3FSM

FSRF

FSE

FSAM

FSRM

FSPo

FSVo

FSF

Table 11

DC Filter Model Variable Definitions

Single-Phase Dc Filter Stage Mass

3-Phase Dc Filter Stage Mass

Dc Filter Stage Ripple Factor (1 to 5%)

Dc Filter Stage Efficiency (99.5%)

Dc Filter Stage Available Modules

Dc Filter Stage Required Modules

Dc Filter Stage Power Output (kWe)

Dc Filter Stage Voltage Output (Vrms)

Dc Filter Stage Frequency (kHz)

The equations developed for the single-phase and 3-phase dc filter mass
estimates are shown below. Each factor in the equations will be discussed

separately. The factor being discussed will be underlined and accompanying
graphs will be used to display the values generated by the equations. Dc filter

mass breakdown tables are located in Appendix A on page A-4.

Mass Coefficient

IFSM=4700*(I/(FSRF/O.O])°'s)*((1-O.995)/(I-FSE))*(FSAM/FSRM),FSPo,

(FSVo2+O.OOOOOI)*(20/FSF)

3FSM=4700*(I/(FSRF/O.OI)°'s)*((1-o.gg5)/(1-FSE)),(FSAM/FSRM),FSPo,

(FSVo'2+O.OOOOOI)*(6.7/FSF)

A four step process was used to determine the mass coefficient used in the

abovedc filter equations. First, masses of actual LC filter designs were locat-
ed in technical reports (Ref. Ill-6, III-7, III-29). Because the filter masses

identified in these reports were under widely varying conditions, it allowed the

later developed filter equations to be verified in different applications. The

next step was to calculate filter masses using equations developed by TRW during

a component mass optimization study (Ref. III-28). The parameters input into
these filter mass equations were obtained from values contained in the reference

reports. The third step compared the calculated filter masses with masses listed

in reports. Finally, discrepancies were noted and investigated.

The TRW equations generally appeared to be quite accurate and seemed to

correctly reflect the dc filter mass trends associated with voltage, frequency,

and efficiency. Using a mass coefficient value of "4700", fairly good dc filter

mass estimates were obtained for filters preceding resonant converters and fil-

ters following rectified alternator outputs. It was previously stateG in the
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section discussing the chopper equation development that a resonant converter
design would be employed through out the model development.

Ripple Factor

IFSM:4700*(I/(FSRF/O.OI)°'s)*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo *

(FSVo2+O.OOOOOI)*(20/FSF)

3FSM=4700*(I/(FSRF/O.OI)°5)*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo *

(FSVo2+O.OOOOOI)*(6.7/FSF)

The ripple factor measures the amount of ripple existing on the dc wave-
form. It is calculated with the following equation:

RF= (VR)/Vdc

where: RF is the ripple factor expressed as a percentage

VR is the ripple voltage level expressed as arms value
Vdc is the dc voltage level.

Naturally, the dc filter mass will increase as the ripple requirements get

more stringent. Equations derived by Gilmore and later verified by the TRW cal-
culations showed that the mass would change by the reciprocal of the square root

of the increase in the ripple factor. This led to the factor underlined above.

Figure 19 shows the rise in dc filter mass occurring as the ripple factor is
reduced. To obtain filter masses consistent with SSF requirements or expected

lunar base habitat needs, it is recommended that the ripple factor be set at 1%.

For utility power applications, such as following a large alternator based power
source or feeding drive motors, a value of 5% is suggested. Larger ripple factor

values appear to be undesirable for the power transmission system and also cause
the filter mass estimates to become less accurate. The subsequent graphs on

filter characteristics will use a ripple factor of I% unless otherwise noted.

Efficiency Factor

IFSM:4700*(I/(FSRF/O.OI)°'5)*((]-O.995)/(]-FSE))*(FSAM/FSRM)*FSPo *

(FSVo'2+O.OOOOOI)*(20/FSF)

3FSM:4700*(I/(FSRF/O.OI)°'s)*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo *

(FSVo'2+O.OOOOO])*(6.7/FSF)

The efficiency of an LC filter network is determined by the equivalent

series resistance (ESR) of the inductor and capacitor. To reduce the ESRs of

these devices the inductor winding and core size, and the capacitor dielectric
cross sectional area must be increased. This increases filter mass. The TRW

equations were used to calculate filter masses for efficiency values ranging from
99.3 to 99.7%. They indicated there was a linear relationship between dc filter

mass and efficiency. The factor underlined above was computed during this

exercise and used to generate Figure 20. It depicts the change in dc filter

specific weight occurring with a change in efficiency.
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Redundancy Factor

]FSM=n700*(I/(FSRF/O.O])°'s)*((I-o.g95)/(I-FSE))*(FSAM/FSRM)*FSPo *

(FSVo2+O.OOOOOI)*(20/FSF)

3FSM=4700*(I/(FSRF/O.OI)°'s)*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo *

(FSVo2+O.OOOOO])*(6.7/FSF)

The redundancy factor underlined above addresses the mass penalty associ-

ated with a more reliable system. The actual number of modules in the assembly
is defined by the "available modules" value. The number of modules needed to

provide full power is defined by the "required modules" value. If a design
requires 4/3 redundancy to meet the reliability requirements, four 33% rated

channels will be used. This increases the mass of the assembly at least 33%.

The mass of the fourth channel is the penalty incurred to achieve a higher reli-
ability.

Power Level Multiplier

IFSM=4700*(I/(FSRF/O.OI)°'s)*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FS_.SP_o P*

(FSVo'2+O.OOOOO])*(20/FSF)

3FSM=4700*(I/(FSRF/O.OI)°'s)*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FS_.SP.oP *

(FSVo2+O.OOOOO])*(6.7/FSF)

The equations can calculate filter mass or specific weight. When the power

level multiplier is included, the equations determine the mass of the dc filter.

Remove this multiplier to obtain the dc filter specific weight.

Note that a power level factor is not included in the dc filter mass equa-

tions. The TRW equations indicated the filter specific weight remained constant

with power level. This is shown in Figure 21 for single- and 3-phase filter

designs. Because the energy density of the capacitors and inductors in the fil-

ter network remains constant regardless of the power level, the filter specific

weight does not change. The gains that might be realized in packaging density

as the component sizes increased, were considered to be insignificant.

Voltage Level Factors

]FSM=4700*(I/(FSRF/O.O])°'s)*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo*

_2+O.O0000I)*(20/FSF)

3FSM=4700*(I/(FSRF/O.OI)°'s)*((I-o.ggs)/(I-FSE))*(FSAM/FSRM)*FSPo *

F__F_SVo2+O.OOOOOI)*(6.7/FSF)

In most LC filter designs, the mass of the capacitor is the largest portion

of the filter mass. To determine the changes that will occur in filter mass as

the voltage level rises, the changes occurring in capacitor mass must be identi-

fied. For a given power level and frequency, the energy that must be stored in

the filter is constant regardless of the voltage level, but the filter capaci-

tance is not. The energy stored in a capacitor is defined by the equation:
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E:½CV 2

where: C is the capacitance in farads

V is the voltage level in volts.

By inspection, one can see that the energy stored in a capacitor rises with the

voltage squared. If the voltage level is doubled, the capacitance can be reduced
to one-fourth of its previous value and the amount of energy that is stored will

remain the same. If a constant mass per farad is assumed, the capacitor mass

will drop to one-fourth of its previous value. Because the mass of the capacitor

dominates the filter mass at voltages below 1000 Vdc, most of the change in fil-

ter mass results from a change in capacitor mass. Below 120 Vdc this correlation

is quite accurate. Figure 22 shows the relationship between filter mass and

voltage for voltage levels below 120 Vdc.

Although there were not any restrictions associated with the constant mass

per farad assumption contained in the TRW report, it is doubtful that the authors

intended this assumption to be extended to high voltage applications. A survey

of capacitors indicates there are a number of dielectric materials that can read-
ily withstand voltages up to 1000 Vdc without greatly increasing the dielectric

thickness. This seemed to indicate that this assumption had merit up to this

voltage level. However, at voltages approaching 1000 Vdc, the need to increase

the dielectric thickness to prevent voltage breakdown, will cause the mass per
farad to rise.

Because capacitor mass initially declines quickly with voltage, the induc-

tor mass becomes significant at voltages above 250 Vdc. For voltages above a

1000 Vdc, the reductions in capacitor mass that theoretically occur with a rising

voltage are largely offset by the capacitor's rising mass per farad and increases

in inductor mass. This causes the filter specific weight to become relatively

constant. This is shown in Figure 23. The voltage factor underlined above is

designed to cover a voltage range from 20 to 10000 Vdc and it was developed by

assimilating the data from this analysis.

Frequency Factor

IFSM=4700*(I/(FSRF/O.OI)°s)*((1-O.99S)/(I-FSE))*(FSAM/FSRM)*FSPo *

(FSVo'2+O.OOOOOI)*(20/FSF)

3FSM=4700*(I/(FSRF/O.OI)°'s)*((1-O.B95)/(]-FSE))*(FSAM/FSRM)*FSPo *

(FSVo2+O.OOOOOI)*(6.7/FSF)

The mass of a dc filter is primarily determined by how much energy it must

store. The energy storage requirements are in turn proportional to the ripple

frequency. The further apart the wavecrests of the ripple voltage are, the more

energy a filter must provide to the system to maintain a smooth dc output. The
ripple frequency of a full wave rectified single-phase waveform is twice the

input frequency. Because the three phases of a 3-phase system are superimposed

after rectification, the ripple frequency of the output is six times the operat-

ing frequency. To best illustrate these points, the dc filters needed after

linear and rotary alternator rectifiers are compared. The effects of different

ripple frequencies and the features of single- and 3-phase systems can be evalu-

ated in an application that is real and of considerable interest.
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For some applications, the single-phase ac generated by a linear alternator
will need to be converted into dc. To obtain dc, the output of the linear alter-

nator is first rectified. An ideal linear alternatorwaveform is shown in Figure

24. Figure 25 shows the waveform obtained after perfect rectification. The
waveform distortion that occurs when the power piston reverses direction, and the
rectifier conduction and commutation losses have been disregarded for clarity _.

Because the waveform depicted in Figure 25 has a very high ripple content, it

would be unsatisfactory for most dc power transmission applications. It must be

smoothed with adc filter to make it better approximate a dc voltage.

One of the most common techniques for filtering a rectified waveform is to

place an LC filter after the output. The capacitor in this filter provides ener-

gy to the system when the voltage level declines, reducing the dip between wave-
form crests. The effect of adding a simple LC filter is shown in Figure 26. Each

shaded area depicts the relative amount of energy that must be stored in the

capacitor. This energy level is proportional to the frequency and power quality

requirements. The more energy the dc filter must store, the heavier it becomes.
The waveform obtained from the rectification of the 70 Hz single-phase linear

alternator output is relatively difficult to filter. To illustrate this point,
the filtered linear alternator dc output will be contrasted with a rectified and

filtered rotary alternator output.

The individual phases of a rotary alternator three-phase, I kHz waveform

are shown in Figure 27. Notice that each phase is offset 120 degrees from the

other two. (When comparing the rotary and linear alternator waveforms, note that

the rotary alternator time scale has been expanded for clarity. For a true com-

parison the rotary alternator waveform would have slightly over 14 cycles for I

cycle of the linear alternator waveform.)

The ac output of the rotary alternator can be converted into dc with a

rectifier and dc filter. Figure 28 shows the perfect rectification of a rotary

alternator output. Because the three-phases are evenly offset, a fairly smooth

dc output results when they are rectified and superimposed. The ripple content
of this waveform is much lower than in the linear alternator case. This occurs

because the rotary alternator frequency is much higher, I kHz versus 70 Hz, and

its output is three-phase instead of single-phase. These two factors result in

a ripple frequency of 6 kHz, approximately 40 times the 140 Hz ripple frequency
of the linear alternator.

In some cases, the rectified rotary alternator output may be adequate for

dc transmission; however, some filtering will be required for most applications.

Typically, an LC filter is placed across the output to make it better approximate

a dc voltage. The addition of an LC filter is shown in Figure 29. Energy is

supplied by the capacitor in this filter when the voltage dips, smoothing the
waveform. The shaded areas between crests depict the amount of energy stored in

the capacitor. Since the energy storage requirement of a filter is proportional

Conduction losses occur due to the voltage drop across the diodes or

silicon controlled rectifiers (SCRs) normally used to rectify an ac

waveform. Commutation losses result when the current sequentially

transfers or commutates from one SCR or diode to the next.

These losses will cause discontinuities in a rectified wave-

form, especially near zero.
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Figure 24 Linear Alternator Output Waveform

Figure 25 Rectified Linear Alternator Output
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Figure 28 Rectified Rotory Alternotor Output Waveform

Figure 29 Rectified Output ofter Filtering
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to the ripple frequency and the ripple frequency of the rectified rotary alterna-

tor output is about 40 times higher than the rectified linear alternator output,
the energy that must be stored in the rotary alternator dc filter is much lower.
Consequently, the mass of the rotary alternator dc filter is much less.

Using a ripple factor of 5%, Figure 30 graphically compares the masses of

single- and 3-phase dc filters at the frequencies associated with linear and

rotary alternators. One should not infer from this chart and the above discus-
sion that the filter mass of the linear alternator must be 40 times that of the

rotary alternator, this would be an extreme. A systems analysis must be conduct-

ed to determine appropriate filtering requirements. It may not be prudent to

impose the same requirements on both alternator designs. If the power system

pays a large mass penalty to heavily filter a rectified alternator output, it may

be better to place Filters on the inputs of sensitive equipment and only provide
coarse filtering after the alternator rectifier.

Because the filtering associated with high frequency converters is also of

interest, Figure 31 was generated. It compares the dc filter masses on the out-

puts of two dc/dc converters. These filters follow single- and 3-phase rectifier

stages and are designed to meet I% ripple requirements.

3.1.5 AC Filter Stage Model

Resonant converters can typically achieve less than 5% total harmonic dis-

tortion without filtering. This is adequate for most PMAD applications; however,

a series harmonic trap is required to prevent external harmonics from being amp-
lified within the converter. The mass of a harmonic filter is difficult to esti-

mate. In discussions held with converter designers familiar with the design of
harmonic filters, they indicated present harmonic filter designs are not opti-
mized and quite a bit of improvement is expected. Many articles discuss harmonic

distortion, but none were found that described a method for calculating the mass

of a harmonic filter. Consequently, the following equations are approximate
since there is very little concrete data. It is recommended that further work

be done in this area when additional information becomes available. If more

accurate mass estimates are required, it will be necessary to define power qual-
ity requirements and have a knowledgeable designer generate a specific filter de-
sign.

A harmonic filter is placed before the converter input or after its output,
and it is connected in series with the source or load. The equations in this

report are based on a series resonant circuit tuned to the inversion frequency
of the converter. The filter configuration itself consists of a current trans-

former that is connected in parallel with a resistor, and a series connected in-

ductor and capacitor combination (Ref. Ill-30). The current transformer is re-

quired to obtain reasonable values for the inductor and capacitor and to reflect

adequate resistance into the line to inhibit harmonics (Ref. Ill-t1). Much of
the filter mass is concentrated in this current transformer and it can not be
eliminated.

A technical presentation compiled by TRW indicated the mass of a harmonic

filter placed on the output of a 5 kWe, 20 kHz inverter would weigh 1071 grams

(Ref. III-7). The specific weight of this filter is about 0.21 kg/kWe. In a

discussion held at the "High Frequency Power Distribution and Controls Technology

Conference" in June 1991, John Biess indicated it might be possible to reduce
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this filter design to one-third of its present weight with extensive analysis and

optimization. This would result in a specific weight of about 0.07 kg/kWe (Ref.

Ill-11). However, he also indicated this value might be optimistic. Based on

this discussion, it was decided to use a value of 0.1 kg/kWe for a harmonic fil-
ter following a single-phase ] kWe, 20 kHz inverter. The harmonic filter used

for a 3-phase inverter was assumed to consist of three single-phase inverter fil-

ters each rated to carry one-third of the power. Its mass would be just slightly

heavier due to economies of scale. The resulting filter masses for ! kWe single-
phase and 3-phase inverters was estimated to be 100 and 105 grams respectively.

]2.
The variables contained in the ac filter stage equations are shown in Table

IFSM

3FSM

FSE

FSAM

FSRM

FSPo

FSF

Table 12

AC Filter Model Variable Definitions

Single-Phase Ac Filter Stage Mass

3-Phase Ac Filter Stage Mass

Ac Filter Stage Efficiency (99.5%)

Ac Filter Stage Available Modules

Ac Filter Stage Required Modules

Ac Filter Stage Power Output (kWe)

Ac Filter Stage Frequency (kHz)

The equations generated to estimate the masses of single-phase and 3-phase

ac filters follow. The factors in the equations will be discussed separately and

underlined. Graphs will be used to depict the effects calculated by the equa-

tions. Mass breakdowns of ac filters designed for different operating conditions
are located in Appendix A on page A-5. Note that none of these mass breakdowns

is highlighted. This is because none of the individuals consulted felt the pres-

ent masses of harmonic filters were optimized sufficiently to be used as refer-
ence designs.

Mass Coefficient

IFSM=O.I*((I-o.gg5)/(I-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)'°'°3*(FSF/20)'°'6

3FSM-O.IO5*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)°'°3*(FSF/20) °'6

The single- and 3-phase ac filter stage mass coefficients were calibrated

to yield specific weights of 0.1 and 0.105 kg/kWe respectively, when placed after

a I kWe, 20 kHz inverter. This was based on the previously discussed conversa-

tion with John Biess (Ref. Ill-t1). The mass coefficient for the 3-phase design

is larger because it consists of three single-phase filters, each carrying one-

third of the power. Economies of scale are lost in the current transformer as

the filter power level declines. This causes the mass of the 3-phase filter to
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be slightly greater. The difference in massesof single- and 3-phase ac filters
is illustrated in Figure 32. This figure comparesthe specific weights of these
two designs at 10 and 20 kHz resonant frequencies.

Efficiency Factor

IFSM:O.I*((I-O.99S)/(I-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)°'°3*(FSF/20) °'6

3FSM=O.IO5*((I-O.995)/(]-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)°'°_*(FSF/20) "°'6

The ac filter design presented in this study contains a series resonant

circuit. This circuit has the largest influence on filter efficiency and its

efficiency is determined by the ESRs of the inductor and capacitor composing it.
These ESRs can only be decreased by enlarging the inductor winding and core, the

capacitor dielectric area, and the interconnecting lead wires. A larger filter
mass will result. Since this same process occurred in the dc filter case, the

efficiency factors were assumed to be the same. This factor generated the linear

relationship for ac filter efficiency shown in Figure 33.

Redundancy Factor

IFSM:O.1*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)°'°3*(FSF/20) "°'6

3FSM=O.IO5*((1-O.995)/(1-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)'°'°3*(FSF/20) "°'6

A redundancy factor accounts for the additional mass needed to realize a

more reliable system. The actual number of modules in the assembly is defined

by the "available modules" value. The number of modules needed to provide full

power is defined by the "required modules" value. A design requiring 4/3 redun-
dancy has four 33% rated channels. The mass of this assembly will be at least

33% heavier and the mass of the fourth channel is part of the penalty associated

with this higher reliability requirement.

Power Level Multiplier

IFSM:O.I*((]-O.995)/(I-FSE))*(FSAM/FSRM)*FS___oP*(FSPo/FSRM)'°'°_*(FSF/20) "°'6

3FSM:O.IOB*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FS___oP*(FSPo/FSRM)'°'°S*(FSF/20) "°'6

These equations can calculate the mass or specific weight of the ac filter.

If the power level multiplier is included, the mass of the ac filter will be cal-

culated; removing it produces the filter's specific weight.

Power Level Factor

IFSM:O

3FSM=O

.I*((]-o.g95)/(I-FSE))*(FSAM/FSRM)*FSPo*__E._FSRM)'°'°3*(FSF/ZO) "°'6

.I05*((I-o.gg5)/(I-FSE))*(FSAM/FSRM)*FSPo*LE_._o/FSRM}°'°3*(FSF/20) "°'6

The heaviest element in the ac filter is the current transformer. As the

filter power level increases and the size of this transformer grows, its core is
better utilized, and the winding current density izcre_s_'s slightly. These econ-

omies of scale reduce the current transformer specific weight by the 0.08 power

as the filter power level rises. Similar evaluations of the inductor, capacitor,
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and resistor specific weights indicate they do not change with power level. Com-
bining the specific weight properties of all the elements in the ac filter indi-

cates the specific weight of the complete filter will decline at the 0.03 power

as the ac filter power level grows. This influence is shown in Figure 34 for 10,

20, and 40 kHz single-phase ac filter designs.

The "required modules" figure is included in this factor to address the use

of a modular design approach. The total output power of the assembly must be

divided by the required number of modules since each module processes just a por-

tion of this power. Because the specific weight of an ac filter changes with

power, its mass must be calculated at the power level of the individual modules

and not the power level of the complete assembly.

Frequency Factor

]FSM=O.I*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)°'°3*(FSF/20) "°'6

3FSM=O.IO5*((I-O.995)/(I-FSE))*(FSAM/FSRM)*FSPo*(FSPo/FSRM)°'°3*(FSF/20) °'6

The combined impact of frequency on ac filter mass was determined by eval-

uating the influence frequency had on the current transformer, the series reso-

nant circuit, and the resistor masses. The mass of the current transformer core

will decline with increasing frequency because the flux density needed to gener-

ate a given voltage declines as frequency rises. This lower flux density reduces

the transformer core volume and mass. A smaller core means less winding mass be-

cause the mean length of the turns is less. Totaling the overall effect shows

the current transformer specific weight declines at the 0.47 power as frequency
rises. The resonant frequency of the series resonant circuit is calculated with

the following equation.

FR=I/(LC) °'s

Where:
is the resonant frequency,Ris the circuit inductance in Henries,

C is the circuit capacitance in Farads.

By inspection one can see the circuit inductance and capacitance must double if

the resonant frequency is cut in half. This causes the inductor and capacitor

mass to double and shows that the mass of a series resonant circuit is inversely

proportional to frequency. The final element in the filter, the resistor, is

unaffected by frequency. By adding these individual frequency effects together,

a frequency factor was generated for the complete ac filter. This calculation

indicated the specific weight of an ac filter would decline by the 0.6 power as
its resonant frequency rose. The combined influence of frequency on filter mass

is shown in Figure 35 for I and 40 kWe single-phase ac filter designs.

Voltage Factor

The current transformer contained in the ac filter is necessary to obtain

reasonable values for the inductor and capacitor and to reflect adequate resis-

tance into the line to inhibit harmonics. Consequently, the effects of different

operating voltages on the resonant circuit elements and the resistor can be off-

set by selecting the proper turns ratio for this transformer. This means the on-

ly item that will be impacted by varying the voltage level is the current trans-
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former itself. The effect of voltage on a transformer was previously investi-

gated in section 3.].2.1 and it was shown to be fairly minor. Since the trans-
former is only one element in the filter, the cumulative effect will be even

less. After a short analysis, it was considered negligible and a factor was not

included in the equations.

3.1.6 Ancillary Hardware Equations

Every power conditioning component requires ancillary hardware to perform

its functions. In this report, the component ancillary hardware is considered

to consist of the following items: power conductors and connectors, a control

and monitoring subsystem, an enclosure, and a radiator. These items will be

addressed individually in the subsequent sections.

3.1.6.1 Power Conductor and Connector Equations

Within a power conditioning component, conductors are required for internal

power distribution. This section establishes a mass for the input and output

power conductors and the conductors that transfer power from one stage to the
next. It should be noted that the conductor mass value referred to here is only

for power conductors, and not control and monitoring wiring. The wiring within

a particular stage, for example the wiring in the chopper stage that intercon-
nects its switches and tank hardware, is also not included. The control and

monitoring wiring will be covered in section 3.1.6.2, and the wiring within the

chopper stage was already included as part of the ancillary hardware mass re-
ferred to in section 3.1.1.

Power conductors and connectors are primarily sized on the basis of cur-

rent; therefore, the conductor and connector mass is a function of the maximum

steady state current levels within a component. If a voltage transformation
occurs in the component, it is necessary to include separate factors for the

input and output current levels. The information used to develop the following

equations was obtained from SSF documentation (Ref. III-6, Ill-B, III-31). Table
13 defines the variables used in the equations. These equations are based on

copper conductors because copper is more ductile and occupies a smaller volume
than aluminum. Separate equations are provided for single- and 3-phase systems

because the conductor sizes are calculated differently.
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]CCM

3CCM

CE

AM

RM

Po

Vl

Vo

Table 13
Conductor and Connector Equation Variable Definitions

Single-Phase Conductor and Connector Mass

3-Phase Conductor and Connector Mass

Component Efficiency

Available Modules

Required Modules

Power Output (kWe)

Voltage Input (VrmsL_L or Vdc)

Voltage Output (VrmsL.L or Vdc)

Single-Phase, ] Voltage: ICCM=O.O56*(AM/RM)*((Po*IOOO)/Vo)

Single-Phase, 2 Voltages:

3-Phase, I Voltage:

3-Phase, 2 Voltages:

ICCM= (AM/RM )* (O.028* ((Po*]000 )/Vo)

+0. 028*(((Po*IOOO)/CE)/V_))

3CCM: (3°'s/2)*0. 056* (AM/RM) * ((Po*1000)/Vo)

3CCM= (AM/RM) *((3°'s/2)*0.028* ((Po*]000 )/Vo)

+(3°'s/2)*0. 028*( ((Po*IO00)/CE)/Vz) )

3.1.6.2 Control and Monitoring Subsystem Mass and Parasitic Power Equations

Each of the power conditioning components will have some type of control
and monitoring subsystem. This subsystem was assumed to consist of a controller

card, a data interface module, a control and monitoring wiring harness, and

various voltage, current, and temperature sensors. A component controller card

responds to higher level commands and performs the minute steps necessary to

implement these commands. Typical commands might inform a unit to change its
output voltage setpoint or make the latest device temperatures available to the

data bus. The monitoring system provides data on the component operating status

to the internal controller or higher level computers. A data interface module,

normally composed of numerous analog to digital conversion circuits, is required

to convert the sensor signals into the proper form for data bus transmission.

SSF component documentation was utilized to formulate the control and mon-

itoring mass equations (Ref. III-6, III-8, III-31). Table 14 defines the vari-

ables used in these equations. Because a 3-phase system has nearly three times

as much monitoring data to collect and process, separate equations are provided

for single- and 3-phase systems. The equations are broken into three parts, the

controller card and data interface module, the control and monitoring wiring, and
the sensors.
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Table 14

Control and Monitoring Equation Variable Definitions

ICMM Single-Phase Control and Monitoring Mass

3CMM 3-Phase Control and Monitoring Mass

lCMP Single-Phase Control and Monitoring Power

3CMP 3-Phase Control and Monitoring Power

AM Available Modules

RM Required Modules

PO Power Output (kWe)

Single-Phase Mass: ICMM=AM*(I.4+O.9*(Po/RM)°'3+O.25*(Po/RM) °'3)

3-Phase Mass: 3CMM=AM*(2+2.5*(Po/RM)°'3+O.75*(Po/RM) °'3)

Single-Phase Power: ICMP=AM*55.6*(Po/RM) °'I

3-Phase Power: 3CMM=AM*79.4*(Po/RM) °'I

The present mass of a SSF component controller card and data interface
module is 2.8 kg. Based on the rapid progress occurring in control and data

processing, it was felt this value would decline 50% by the year 2000. A value

of 2 kg was assumed for a 3-phase component due to the additional data handling

requirements.

From SSF component mass breakdowns, it was determined that the average mass

of a control and monitoring wiring harness for a component rated at around 10 kWe

was about 3.6 kg. This value was expected to decline about 50% with the intro-

duction of fiber optics (Ref. Ill-t1). By replacing much of the present copper

wiring with fiber optic cables, it was anticipated that the mass of the control

and monitoring wiring could be reduced to 1.8 kg. Because a 3-phase system has

nearly three times as many control devices and sensors, its wiring was estimated

to weigh 5 kg. As'a component's power level grows, its volume increases propor-
tionally. Consequently, its linear dimensions increase by the cube root of the

power, and the length of the control and monitoring wiring harness grows like-
wise. This accounts for the 0.3 exponent in this factor. Based on this previ-

ously described analysis, the single- and 3-phase control and monitoring wiring

factors were designed to yield values of 1.8 kg and 5 kg respectively for 10 kWe

rated components.

Again using SSF component mass breakdowns, a value of 0.6 kg was estimated
for the mass of the monitoring sensors in a typical 10 kWe component. Anticipat-

ing technology improvements by the year 2000, this value was reduced to 0.5 kg.

A 3-phase system should have almost three times as many sensors; hence, a value

of 1.5 kg was used for it. The mass of the sensors will increase as the compo-

nent power levels rise. A potential transformer used to measure high voltages

will weigh considerably more than one measuring low voltages. It was estimated
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that the massof the sensors would roughly double whenthe componentpower level
went up by a factor of ten. To obtain this massgain as power grew, an exponent
of 0.3 was included in the sensor massfactor. The sensor massfactors were cal-
ibrated to yield 0.5 and 1.5 kg respectively for single- and 3-phase 10 kWecom-
ponents.

Powermust be obtained from the componentinput to operate the control and
monitoring subsystem, the semiconductor switch gate drive circuitry and control
logic, the control power converters, relay coils, heaters, etc. In this report,
these power requirements are referred to as the parasitic power demand. An engi-
neering information documentwritten to describe the operation of the SSFelec-
trical power system indicated the parasitic powerdemandsof componentsrated for
around 10 kWewould be approximately 100 watts (Ref. III-32). Since the largest
portion of this power is demandedby the control and monitoring subsystem and
improvements are expected in this area by the year 2000, this value has been
reduced to 70 watts. 3-phase componentscontain moresensors and control devic-
es. The additional power needed for these devices was expected to be about 30
watts; consequently, the parasitic power demandof a 10 kWe3-phase componentwas
judged to be 100 watts. It is expected that parasitic power demandswill rise
slowly as componentpower levels increase, becausecertain control and monitoring
devices will need more power to perform their functions. The exponent 0.1 was
included in the factor to account for these gradual power increases.

3.1.6.3 Component Volume, Dimension, and Enclosure Equations

Regardless of the power level, the density of the electronics in power con-

ditioning components operating under similar conditions will normally be compara-
ble. To determine an appropriate component electronics density, the electronics

densities of several SSF components were computed. This information is presented
in Table 15.

Table 15
SSF Power Conditioning Component Densities

Component

DC/DC Converter Unit

DC Switching Unit

Battery Charge/Discharge Unit

Main Bus Switching Unit

Average

Electronics Density

(qrams/cubic cm)

0.293

0.332

0.282

0.338

0.311

Assuming a 10% improvement in packaging densities will be realized by the year

2000, a value of 0.342 grams/cubic centimeter was used. Using this density, the

component volume can be calculated using the following formula:
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CV:CEM/(O.342*IO00)

where: CV = Component Volume in cubic meters
CEM = Component Electronics Mass in kilograms

Knowing the component volume, it is possible to generate dimensions for the

component. Referring to dimensions reported for SSF enclosures, the following

per unit aspect ratios were determined for a typical component: height, 0.7;
width, 1.I; and length, 1.3. Using these aspect ratios and computing the cube

root of the volume, the component height, width, and length can be calculated.

Height=O.7*CV °-3333

Width=1.1*CV °.3333

Length=1.3*CV °.3333

A component requires an enclosure to provide protection from the environ-

ment, but enclosure types vary depending on the application. Two types are men-
tioned here and offered as options in the models. The first type uses a finned

heat exchanger to transfer heat from an internal component baseplate to an exter-

nal coldplate assembly. The finned heat exchanger concept is relatively heavy

and has a higher temperature drop than other approaches, but it was selected for
the SSF to allow replacement of the power conditioning units. An advanced con-

cept would replace the finned heat exchanger with high density fiber pads con-
structed from graphite or copper. These pads would rely on both fiber to fiber

contact and radiation to pass heat between the surfaces and resemble two carpets
laid face to face. Recent advances in this area indicate this technique is

feasible and it definitely deserves further study. However, because there was

not any concrete information available, it was not included in the models. The

second approach mounts the electronics directly on a coldplate and relies on a

fluid that is pumped through the coldplate for heat removal. For this approach,

some type of quick disconnect is required. Only the coldplatemass is addressed,

not the quick disconnect mass.

The enclosure consists of different parts, the housing, connector struc-

ture, mounting hardware, and depending on the concept a radiant fin baseplate or

coldplate. The following breakdown was obtained for the orbital replacement unit

(ORU) Type I box from SSF documentation (Ref. III-6). The Type I box is 68.6 cm

in length, 58.4 cm in width, and 30.5 cm high.

Table 16

SSF ORU Box Mass Breakdown

Enclosure Subassembly

Box Housing

Connector Structure

Mounting Hardware

Radiant Fin Baseplate

Total

Mass

8.2

0.6

5.3

13.4

27.5
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Of the radiant fin baseplate mass, about 50%is dedicated to the radiant fins,
and the remainder is the aluminum baseplate and heat exchanger piping.

It is anticipated that carbon-carbon will replace muchof the aluminum in
future enclosures. The density of aluminum is 2.7 g/cm3, carbon-carbon is 1.65

g/cm 3. This represents a reduction of about 39%. It will probably be impractical

to replace the connector structure and mounting hardware materials with carbon-

carbon, but it should be fine for the box housing. This would reduce the box

housing, connector structure, and mounting hardware mass from 14.1 kg to 10.g kg.
Regarding the radiant fin baseplate, it was assumed that only the aluminum base-

plate and heat exchanger piping could utilize carbon-carbon. This replacement

reduced their mass from 6.7 kg to 4.1 kg. Anticipated difficulties in fabricat-

ing the radiant fins, precluded the use of carbon-carbon for this piece of hard-

ware. Table 17 lists the projected mass breakdowns for the finned heat exchanger
and coldplate enclosure concepts that were utilized as the basis for the subse-
quent enclosure equations.

Table 17

Projected Enclosure Mass Breakdowns

Finned Heat Exchanger Coldplate

Enclosure Subassembly Enclosure Mass (kq) Enclosure Mass (kq)

Box Housing 5.0 5.0

Connector Structure 0.6 0.6

Mounting Hardware 5.3 5.3

Baseplate or Coldplate 4.1 4.1

Radiant Fins 6.___Z N/A

Total 21.7 15.0

The enclosure mass is closely related to the component volume. Using a
perfect cube as an example, the volume is the length of a side cubed, while the

surface area is 6 times the length of a side squared. Therefore, the surface

area is related to the volume by the 2/3 power or 0.6666. The enclosure mass is

directly derived from the surface area. Depending on the enclosure type being
considered, the mass of the baseplate and radiant fins, or the mass of the cold-

plate, is a function of the bottom side of the box. This is simply the length

times the width. This logic was used to develop the following equations.

FHEM=44.26"CV°'_+27" (L'W)

CPEM=44.26*CV°-_+IO.25*(L*W)

where: FHEM = Finned Heat Exchanger Enclosure Mass in kilograms

CPEM : Coldplate Based Enclosure Mass in kilograms
CV - Component Volume in cubic meters

L = Length in meters
W = Width in meters
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The factor "44.26"CV°'_66'' calculates the massof the box, connector struc-
ture and mounting hardware; the factors "27*(L'W)" or "IO.25*(L*W)" estimate the
mass of the finned heat exchanger baseplate and fins, or the coldplate. The
coefficients "44.26", "27", and "10.25" were calibrated to yield enclosure mass
estimates that are in agreementwith the above mass breakdowns.

3.1.6.4 Radiator Area and MassEquations

A radiator is used to dissipate waste heat generated in a power condition-
ing component. For the equation development, a two sided radiator was selected.
It was assumedto be a vertical flat plate that stood under 4.5 meters in height.
The massof the radiator was calculated from the componentpower losses and the
effective radiator and lunar surface sink temperatures. The radiator surface
temperature was computedby assuminga 16.7" C temperature delta existed between
the electronics coldplate and the radiator surface. Using a reflective blanket
that was placed on the lunar surface, the effective sink temperature was reduced
to 250 K.

RA=(I.]212E+IO*Q)/(T4-Ts4)

RM=4.159*RA

where: RA= Radiator Area in square meters
RM= Radiator Mass in kilograms
Q = Heat to be Dissipated in kWt
T = Radiator Surface Temperature in Kelvin
Ts = Radiator Sink Temperature in Kelvin

(250 K is recommended)

The equations utilized a radiator efficiency of 0.873 and massper square meter
coefficient of 4.159. These values were calculated using Rocketdyne radiator
codes. The radiator surface emissivity was assumedto be 0.9.

3.1.7 DC RBI Model

Dc remote bus isolators (RBIs) are smart circuit protection devices that

incorporate current sensors and are used to switch dc power and interrupt fault

currents. They will be located in dc switchgear units. This section discusses

the equation developed to estimate their masses as a function of power, effici-

ency, and voltage. This equation is only capable of providing rough mass esti-

mates for component comparison purposes. For more accurate mass estimates spe-

cific component designs will need to be developed.

The latest dc RBI switchgear design uses a channelized approach because the

card cage assembly that controls and monitors the dc RBI operation can be shared

among several units. A single RBI channel can assume three different configura-
tions, a mechanical relay, a hybrid arrangement consisting of a mechanical relay

paralleled with a semiconductor switch, or a semiconductor switch. The SSF RBIs
use a mechanical relay and add a snubber circuit to suppress voltage transients

occurring during opening and closing periods. A hybrid arrangement has certain

advantages because the relay and semiconductor switch can function together to

improve the operating characteristics of the RBI switch. The relay carries the
bulk of the current during normal operation; this results in a high efficiency

switch. The main need for the semiconductor switch is during opening and closing
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times. It closes immediately before relay closing to quell relay chatter tran-
sients, and it opens after the relay to suppress opening transients. The opening
rate of the semiconductor can be varied to obtain the best opening characteris-
tics. The design that only uses a semiconductor switch exhibits very good open-
ing and closing characteristics, but the conduction resistance of a semiconductor
is higher than a relay contact so the switch losses are significantly higher dur-
ing normal operating periods.

The dc RBI model described in this report is based on a hybrid switch con-
figuration. This design wasconsidered to provide the best combination of mass,
efficiency, and switching characteristics. However, as the RBI voltage rises the
switch design will probably change from a relay in parallel with a single semi-
conductor to a vacuumswitch in parallel with a numberof series connected semi-
conductors. At the present time, the semiconductor devices in a dc RBI would
probably be MOSFETsor insulated gate bipolar transistors (IGBTs). Future RBI
designs will probably use MCTs. Massbreakdownsfor dc RBIs are shownin Appen-
dix A on page A-6 and A-7. These massestimates were derived from a SSFRBI mass
breakdownand information obtained from a Ford Aerospace briefing package (Ref.
III-6, Ill-31). The RBI efficiency wascalculated from RBI loss information con-
tained in a SSFdocumentwritten by Rocketdyne (Ref. III-33). They were utilized
as a basis for the subsequent equation development.

The following paragraphs explain the dc RBI equation development. Graphs
are used in conjunction with technical descriptions to explain the equation ra-
tionale. The variables used in this discussion are shown in Table 18.

DRBM

DRBE

DRBAM

DRBRM

DRBPo

DRBVo

Table 18

Dc RBI Model Variable Definitions

Dc RBI Mass

Dc RBI Efficiency (99.85%)

Dc RBI Available Modules

Dc RBI Required Modules

Dc RBI Power Output (kWe)

Dc RBI Voltage Output (Vdc)

Mass Coefficient

DRBM=O.12*((EXP(O.OOO8/(1-DRBE)))/1.7)*(DRBAM/DRBRM)*DRBPo*(DRBPo/DRBRM)'O-_S*

(DRBVo/200) °-13

The dc RBI mass coefficient was developed from SSF dc RBI mass breakdowns.

To be consistent with the previously discussed future design, the design of the

SSF dc RBI was revised to include a semiconductor switch in parallel with the

mechanical relay, the snubber circuitry was removed since it was no longer re-
quired, and mass benefits obtained from minor hardware advancements were incor-
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porated. Massbreakdownsof future dc RBIs are contained in Appendix A on pages
A-6 and A-7. Themasscoefficient wascalibrated to yield values consistent with
these massbreakdowns.

Efficiency Factor

DRBM=O.12,((EXP(O.OOO8/(I-DRBE)))/].7)*(DRBAM/DRBRM)*DRBPo*(DRBPo/DRBRM) °'Is*

(DRBVo/200) °'13

The above underlined factor estimates the change in specific weight occur-

ring with a change in dc RBI efficiency. The efficiency of an RBI is quite high
and it does not appear practical to change it much. However, it can be increased

by reducing the resistances of the relay contacts and semiconductor. To accom-

plish this, the conduction areas of these elements must be enlarged. Basically,
doubling the masses of the relay contacts and semiconductor switch will cut their
losses in half. Since the losses are cut in half, the thermal management hard-

ware changes likewise. The rest of the RBI elements will also change slightly
to conform to the new relay, semiconductor, and thermal management hardware

designs. The variation in RBI mass was estimated for efficiencies ranging from
99.8 to 99.9% and it was used to generate the above efficiency factor. A graph

of RBI specific weights that shows the results of this analysis is contained in

Figure 36. Note that the depicted dc RBI efficiency range is relatively narrow.
Efficiencies higher than about 99.9% are not considered practical because the

relay contact and semiconductor switch size will become unwieldy. It is not
feasible to cut the RBI mass below a certain level because the relay contacts,
semiconductor switch, and structural hardware simply will not be strong enough

to withstand the stresses encountered while interrupting a fault current.

Redundancy Factor

DRBM=O.12*((EXP(O.OOO8/(I-DRBE)))/I.7)*(DRBAM/DRBRM)*DRBPo*(DRBPo/DRBRM)'°'Is*

(DRBVo/200) °'_3

The mass of adc RBI network will rise if a modular design approach is used

to enhance reliability. The mass increase is estimated by the factor above. The

"available modules" number is the actual number of modules present in the compo-

nent; the "required modules" value is the actual number of modules required to

provide the full output power level. If the reliability requirements of a system
force a design to use 4/3 redundancy, each channel is designed to carry 33% of

the power. Although 4 channels are available, only 3 channels are needed to sup-

ply full power. The mass of the fourth channel is the penalty paid to obtain the

higher specified reliability.

Power Level Multiplier

DRBM=O.12*((EXP(O.OOO8/(1-DRBE)))/I.7)*(DRBAM/DRBRM)*DR-B-B-_oBP*(DRBPo/DRBRM)'°'_5*

(DRBVo/200) 0"13

The equation can be used to calculate the mass or specific weight of the

dc RBI. When the above multiplier is included, the value that results estimates
the R31 mass. To obtain the specific weight of the RBI, remove this multiplier.
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Power Level Factor

DRBM=O.12*((EXP(O.OOO8/(I-DRBE)))/I.7)*(DRBAM/DRBRM)*DRBPo*___DRBRM) °'15.

(DRBVo/200) °'13

The masses of the power conducting parts of the dc RBI, which are the relay

contacts and the semiconductor switch, will increase nearly linearly with a rise

in power. However, the mass of supporting hardware elements, such as driver mod-
ules, sensors, and control logic devices, grows at a slower rate. This results
in some economies of scale as the dc RBI power level rises and causes its specif-

ic weight to decline. The change in the specific weight of a dc RBI as the power

level rises is shown in Figure 37.

Voltage Level Factor

DRBM=O.12*((EXP(O.OOO8/(I-DRBE)))/I.7)*(DRBAM/DRBRM)*DRBPo*(DRBPo/DRBRM) "°'15.

DRIg_RBVo/200)°'13

As the voltage across a dc RBI increases, its mass was expected to rise at

a slightly higher rate. This is because the elements in the RBI must be further
isolated, more insulation is required, and the stresses are higher. The separa-

tion distance between the relay contacts in a dc RBI will need to increase as the

voltage level rises to prevent vacuum breakdown and arcing. The mass of the sem-
iconductor switch in parallel with the relay is also expected to rise. The semi-
conductor devices will need to be connected in series to handle higher voltages;

however, series connected semiconductors do not inherently share voltages evenly.
Additional hardware is needed to make them voltage share and protect them in case

they do not. Finally, dc systems normally require capacitors to maintain voltage

stability. Unfortunately, the capacitors will discharge into a fault and greatly
increase the initial fault current. The RBI must be structurally strong enough

to withstand the added stress of this discharge. Each of these factors increases

the mass of the complete RBI. By referring to terrestrial RBI designs, an esti-

mate of this mass increase was developed and it was utilized to generate the fac-

tor shown above. The results of this exercise are shown in Figure 38.

3.1.8 AC RBI Model

Ac RBIs are smart circuit protection switches that include current sensors.

They are used to switch major ac power feeds and interrupt faults. They will be

located in ac switchgear units. The equations developed to estimate ac RBI mass

as it varies with power and voltage are discussed in this section. The equations

provide rough mass estimates for component comparison purposes. For more accu-
rate mass estimates specific component designs will need to be developed.

The ac RB! design will be similar in most respects to the dc RBI design.

An ac RBI switchgear unit will also use a channelized approach because the card

cage assembly that controls and monitors ac RBI operation can be shared between
several RBIs. Two configurations are practical for an ac RBI channel, a hybrid

arrangement consisting of a fast acting mechanical relay paralleled with a back-

to-back pair of semiconductor switches, or just a back-to-back pair of semicon-
ductor switches. A solitary mechanical relay is not fast enough to open during

the zero current crossing; consequently, this configuration is not practical.
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The hybrid arrangement is preferred because the relay and semiconductor switch

can work together to improve the operating characteristics of the RBI switch.

During normal power delivery periods, the relay carries the bulk of the current.

The mechanical relay contacts greatly reduce conduction losses and allow high

efficiency operation. The semiconductor switches are primarily required during

opening and closing times. Only semiconductor switches can operate fast enough

to close or open within the zero current crossing point limits. The semiconduc-

tor switches are closed immediately before relay closing to quell relay chatter
transients, and opened after the relay to suppress opening transients. An RBI

design using just semiconductor switches exhibits very good opening and closing
characteristics; however, its conduction losses are much higher than a hybrid

design with a relay. Consequently, the efficiency of this ac RBI design would

be much poorer.

The ac RBI model described in this report is based on a hybrid switch con-

figuration. This design was considered to provide the best combination of mass,

efficiency, and switching characteristics. However, as the RBI voltage rises the

RBI switch design will probably change from a relay in parallel with a single
semiconductor to a vacuum switch in parallel with a number of series connected

semiconductors. At the present time, the semiconductor devices in an ac RBI are

typically SCRs. Future RBI designs may use MCTs. The mass breakdowns that were

used as a basis for the development of an ac RBI mass estimation equation are in

Appendix A on page A-8 and A-9. In a telephone conversation with Dave Fox of

Westinghouse, he indicated that ac and dc RBIs rated to conduct the same amount

of power would have similar masses (Ref. III-34). The data bus interface and

control elements in the ac RBIs would probably be the same as those in the dc

units. The relay in an ac RBI would be lighter because the existence of a zero

current crossing point eases fault current interruption; however, the mass of the

ac RBI must include the mass of a back-to-back pair of semiconductor switches and
their drivers. Based on this discussion the masses of many of the elements in

an ac RBI were obtained from the SSF dc RBI mass breakdown (Ref. III-6).

The ensuing paragraphs explain the development of single-phase and 3-phase

ac RBI equations in detail. The equation formulation is explained via technical

descriptions and graphs. The variables used in succeeding discussions are listed
in Table 19.

1ARB

3ARB

ARBE

ARBAM

ARBRM

ARBPo

_RBV o

Table 19

Ac RBI Model Variable Definitions

Single-Phase ac RBI Mass

Three-Phase ac RBI Mass

Ac RBI Efficiency (99.85%)

Ac RBI Available Modules

Ac RBI Required Modules

Ac RBI Power Output (kWe)

Ac RBI Voltage Output (Vrms)
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MassCoefficient

IARB=O.1" (( EXP(O.0008/( I -ARBE)) )/I. 7)* (ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM)-o.13,

(ARBVo/200)°'°5

3ARB=O.135*((EXP(O.OOO8/(1-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM) "°'15.

(ARBVo/200) °'°5

The SSF dc RBI mass breakdowns were used as a starting point to generate

mass breakdowns for ac RBIs. The resulting ac RBI mass breakdowns were then used

to determine the mass coefficients underlined above. Many elements in dc and ac

RBIs will be equivalent; therefore, the masses of these dc RBI elements were also
used in the ac RBI case. The size of the relay in an ac RBI is smaller, but an

ac RBI requires a back-to-back pair of semiconductor switches. The reduced relay
mass and the mass of these semiconductor switches and their drivers was included

in the ac RBI mass breakdowns. The ac RBI mass breakdown was completed by remov-

ing the snubber circuitry included in the SSF dc RBI design and incorporating the

mass gains resulting from minor hardware advancements expected over the next ten

years. The mass breakdowns generated for future ac RBIs are located in Appendix
A on pages A-8 and A-9. The mass coefficients contained in the ac RBI mass equa-
tions were calculated to yield values consistent with these mass breakdowns.

The mass of the relay in a 3-phase ac RBI design was estimated to be about

50% heavier due to the need for two additional contact and semiconductor switch

pairs. However, because the mass of the control logic and thermal management
hardware is similar in both designs and the packaging weight difference becomes

less as the RBI size grows, the relative difference in mass between the two

designs also declines as the power level rises. The specific weights of single-

and 3-phase ac RBI designs are compared in Figure 39.

Efficiency Factor

IARB=O.]*((EXP(O.OOO8/(]-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM) °'13.

(ARBVo/200) °'°s

3ARB=O.135*((EXP(O.OOO8/(]-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM) °'Is*

(ARBVo/200)°'°!

The efficiency of an ac RBI was expected to be the same as a dc RBI; the

reactive parasitics associated with ac operation were expected to be negligible.

The efficiency of an ac RBI can be increased by enlarging the conduction area of

the relay contacts and semiconductor switches to reduce their resistance. Dou-

bling the mass of the relay contacts and semiconductor switches should cut con-
duction losses in half. The mass of the thermal management hardware should de-

cline proportionally. Other RBI elements will change slightly to conform to the

new relay, semiconductor, and thermal management hardware designs. Changes in
RBI mass were estimated for efficiencies ranging from 99.8 to 99.9%. Efficien-

cies higher than 99.9% are not considered practical because the relay contact and
semiconductor switch sizes would become unwieldy. Below an efficiency of 99.8%

the structural integrity of the RBI, and the strength of its relay contacts and

semiconductor switches would be suspect. The RBI mass breakdowns generated dur-
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ing this process were used to create the above efficiency factor. A graph of ac
RBI specific weights as a function of efficiency is shown in Figure 40.

Redundancy Factor

]ARB=O.I*((EXP(O.OOO8/(I-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM) "°'13.

(ARBVo/200) °'°s

3ARB=O.135*((EXP(O.OOO8/(I-ARBE)))/].7)*(ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM) "°'_s*

(ARBVo/200) °'°s

If a modular design approach is used to enhance reliability, the total mass

of the ac RBI units will rise. The above factor estimates this mass increase.

The actual number of modules present in the system is defined by the "available

modules" number; the number of modules required to deliver full power is speci-

fied by the "required modules" value. If a system is designed with 4/3 redundan-

cy, each channel is capable of carrying 33% of the power. The fourth channel is
not required to provide full power and its mass is the penalty paid to obtain a

higher reliability.

Power Level Multiplier

IARB:O.I*((EXP(O.OOO8/(I-ARBE)))/I.7)*(ARBAM/ARBRM)*AR-B-_-oBP*(ARBPo/ARBRM) °'13.

(ARBVo/200) °'°s

3ARB=_135*((ExP(_8/(1-ARBE)))/1_7)*(ARBAM/ARBRM)*AR--_B-P-_BP*(ARBP_/ARBRM) °'_s*

(ARBVo/200) °'°s

The equations can be used to calculate the mass or specific weight of the

ac RBI. When the above multiplier is included, the value that results estimates

the RBI mass. To obtain the specific weight of the RBI, remove this multiplier.

Power Level Factor

IARB=O.I*((EXP(O.OOO8/(I-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*I-A-_-_-_>/ARBRM)'°'13*

(ARBVo/200) °'°s

3ARB=O.135*((EXP(O.OOO8/(I-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*L_-E_ _/ARBRM)'°'_s*

(ARBVo/200) °'°s

The mass of the relay contacts and semiconductor switches will rise nearly

linearly with an increase in power because they are the power conducting elements
in the ac RBI. However, the mass of the drivers, sensors, and logic devices does

not rise as fast. These trends result in some economies of scale as ac RBI power

levels rise and they cause specific weights to decline. Because the mass of the

ancillary hardware in a 3-phase ac RBI occupies a larger percentage of its total

mass, the gains in specific weight that occur with power are greater in this RBI

design than in the single-phase RBI design. This explains the difference between

the single- and 3-phase power level mJl_ipl;er exponents, -0.18 and -0.21. The

difference in mass growth rates between single- and 3-phase ac RBIs can be seen
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by referring back to Figure 39. An expanded view of only the single-phase ac RBI

is shown in Figure 41.

Voltage Level Factor

IARB=O.I*((EXP(O.OOO8/(I-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM) °'I_*

___200) °'°5

3ARB=O.]35*((EXP(O.OOO8/(I-ARBE)))/I.7)*(ARBAM/ARBRM)*ARBPo*(ARBPo/ARBRM) "°'15.

_200) °.°s

A number of effects, some of them offsetting, occur as the voltage across

an ac RBI increases. The internal RBI wiring and its devices will require more

insulation to withstand the added voltage stresses. The relay contacts will need

to be separated further to prevent vacuum breakdown. These effects tend to in-
crease the RBI mass, especially the relay mass. However, assuming the RBI power

level remains the same, the current conducted by the contacts will decline as the

voltage rises. This reduces the mass of the relay contacts and the relay driver.
Since the mechanical parts of the relay are heavier than insulation, the overall

effect should be a slight reduction in relay mass as the ac RBI voltage increas-
es. The mass of the semiconductor switches in parallel with the relay, however,

is expected to rise as voltage increases. Semiconductor devices must be connect-
ed in series to switch higher voltages; however, series connected semiconductors

will not naturally share voltages evenly. Additional hardware is needed to make

them voltage share and protect them in case they do not. These factors increases
the mass of the RBI. After weighing the increase in semiconductor mass against

the reduction in relay mass, it appears the mass of a complete ac RBI will slowly

rise as voltage levels rise. Figure 42 displays the results of this evaluation.

3.1.9 DC RPC Model

Dc remote power controllers (RPCs) are used to switch and monitor individu-

al dc load circuits and provide circuit protection. These devices will be locat-

ed in dc power distribution panels. This section explains the equation developed
to estimate their masses as a function of power, efficiency, and voltage. This

equation provides rough mass estimates for component comparison purposes. For
more accurate mass estimates specific component designs must be developed.

The present dc RPC panel design uses a channelized approach similar to the
dc RBI configuration since the card cage assembly that controls and monitors the

operation of a dc RPC can be shared among several units. The current RPC channel

employs a hybrid arrangement consisting of a mechanical relay paralleled with a
semiconductor switch. A hybrid arrangement is appropriate because the relay and

semiconductor switch can function together to yield a high efficiency switch that

also exhibits good opening and closing characteristics. The dc RPC equation de-
scribed in this section is based on this hybrid switch configuration. The attri-

butes of a hybrid switch configuration and the reasons for selecting it over just

a relay or only a semiconductor switch are explained in greater detail in the dc
RBI section. Since a dc RPC is essentially a lower power dc RBI in many respects

and most of their characteristics are similar, the paragraphs describing the RPC

equation development and rationale will rely h_avily on the previous dc RBI dis-

cussion. Explanations will be succinct to reduce the amount of repetition. If
additional information is desired please refer back to the dc RBI discussion.
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It was mentioned that the dc RBI and RPC configurations are similar; how-

ever, there are some differences that cause their specific weights to vary. The
mass of the thermal management hardware occupies a larger percentage of the RPC

mass. This is not because an RPC is less efficient, but because thermal manage-
ment hardware does not scale linearly down to these smaller power levels. The

mass of the housing and structure of an RPC also assumes a greater portion of the

total mass for the same reason. The effect of these two items causes the specif-
ic weight of an RPC to be considerably higher than a RBIo Dc RPC mass breakdowns

are contained in Appendix A on page A-tO and A-11. They were derived from SSF

RPC mass breakdowns and were used as a basis for the subsequent equation develop-
ment (Ref. Ill-6).

The dc RPC equation development is explained in the following paragraphs.

Graphs are used in conjunction with technical descriptions to explain the equa-
tion rationale. Variables used in this discussion are shown in Table 20.

DRPM

DRPE

DRPAM

DRPRM

DRPP o

DRPVo

Table 20

Dc RPC Model Variable Definitions

Dc RPC Mass

Dc RPC Efficiency (99.85%)

Dc RPC Available Modules

Dc RPC Required Modules

Dc RPC Power Output (kWe)

Dc RPC Voltage Output (Vdc)

Mass Coefficient

DRPM:O.36*((EXP(O.OOO3/(I-DRPE)))/I.22)*(DRPAM/DRPRM)*DRPPo*(DRPPo/DRPRM)°-_a*

(DRPVo/120) °'°4

The dc RPC mass breakdowns located in Appendix A were derived from SSF dc

RPC mass breakdowns. The SSF RPC mass breakdowns and those used for this equa-
tion development are based on a hybrid configuration consisting of a paralleled

relay and semiconductor switch. Mass gains originating from technology improve-

ments are incorporated into the breakdowns in Appendix A and they result in about
a 15% reduction in total RPC mass. The above mass coefficient was calculated to
yield values consistent with these mass breakdowns.

Efficiency Factor

DRPM:O.36*((EXP(O.OOO3/(]-DRPE)))/I.22)*(DRPAM/DRPRM)*DRPPo*(DRPPo/DRPRM)'°-_8*

(DRPVo,/120) °'°4

The above underlined factor estimates the change in specific weight occur-

ring with a change in dc RPC efficiency. The efficiency of an RPC can be raised
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by enlarging the contact and semiconductor conduction area to reduce their resis-
tance. The massof the relay contacts and semiconductor switch will increase,
but the thermal managementhardware masswill decline. Other RPCelements must
be reconfigured to conform to the newrelay, semiconductor, and thermal manage-
ment hardware designs. RPCmassestimates were generated for efficiencies rang-
ing from 99.8 to 99.9% and they were used to generate the above efficiency fac-
tor. A graph of these RPCspecific weights is shown in Figure 43.

RedundancyFactor

DRPM=O.36*((EXP(O.OOO3/(I-DRPE)))/].22)*(DRPAM/DRPRM)*DRPPo*(DRPPo/DRPRM) °'_8.

(DRPVo/120) °'°4

The mass of a dc RPC network rises if a modular design approach is used to

enhance reliability. The factor underlined above estimates this mass increase.
The "available modules" number is the actual number of modules present in the

component; the "required modules" value is the actual number of modules required

to provide the full output power level. Assume the reliability requirements of

a system drive a design to use 4/3 redundancy. Each channel will be designed to

carry 33% of the power. 4 channels will be available, but only 3 are needed to

supply full power. The mass of the fourth channel is the penalty paid to obtain

the higher specified reliability.

Power Level Multiplier

DRPM:O.36*((EXP(O.OOO3/(I-DRPE)))/I.22)*(DRPAM/DRPRM)*DR_B__oPP*(DRPPo/DRPRM) "°'la*

(DRPVo/120) °'°4

The equation can be used to calculate the mass or specific weight of the
dc RPC. When the above multiplier is included, the value that results estimates

the RPC mass. To obtain the specific weight of the RPC, remove this multiplier.

Power Level Factor

DRPM=O.36*((EXP(O.OOO3/(I-DRPE)))/I.22)*(DRPAM/DRPRM)*DRPPo*.CP_R_P__DRPRM) °'_8.

(DRPVo/120) °'°4

The masses of the dc RPC relay contacts and the semiconductor switch, will

increase proportionally with a rise in power. However, the masses of supporting
hardware elements, such as driver modules, sensors, and control logic devices,

will grow at a slower rate. This results in some economies of scale as the RPC

power level rises and causes its specific weight to decline. The change in the

specific weight of a dc RPC as the power level rises is shown in Figure 44.

Voltage Level Factor

DRPM:O.36*((EXP(O.OOO3/(I-DRPE)))/].22)*(DRPAM/DRPRM)*DRPPo*(DRPPo/DRPRM) '°'_8.

I_O_RpV</120)°'°4

The mass of an RPC was expected to rise slowly as the voltage across it was

increased. However, RPCs are located near the loads and experience voltages that
are much lower than RBIs. Consequently, many effects identified with high volt-
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age operation, such as vacuum relay breakdown, presumably will not be a factor.
RPC voltages also are not high enough to warrant connecting semiconductor switch-

es in series. This means the problems associated with this form of operation
will not occur and the mass of the semiconductor switches should not rise much

with voltage. Finally, capacitors contained in dc systems are normally located

in the dc switchgear units or near the power source. They will probably be

separated from the RPCs by a considerable amount of cabling. This will greatly

reduce the effects of capacitor discharge into a load fault and mitigate the
stress imposed on the RPC. The main item that will increase the mass of the RPC

is added insulation. This is needed to withstand higher voltages, but its effect

on RPC mass should be minor. Figure 45 displays the results of this analysis.

3.1.10 AC RPC Model

Ac RPCs are used to switch and monitor individual ac load circuits and pro-
vide circuit protection. These devices will be located in ac power distribution

panels. The following paragraphs explain the equations generated to estimate the

masses of single- and 3-phase RPCs as a function of power, efficiency, and volt-
age. These equations are only capable of providing rough mass estimates for com-

ponent comparison purposes. For more accurate mass estimates specific component
designs will need to be developed.

The present ac RPC panel design uses a channelized approach like the ac RBI

configuration. This allows the card cage assembly that controls and monitors ac

RPC operation to be shared among several units. The current RPC channel employs

a hybrid arrangement that consists of a fast acting mechanical relay in parallel

with a back-to-back pair of semiconductor switches. This hybrid arrangement is

preferred because it allows the relay and semiconductor switches to function to-

gether to yield a high efficiency switch with good opening and closing character-

istics. The ac RPC equation described here is based on a hybrid switch configu-
ration. The virtues of a hybrid switch configuration and the reasons for select-

ing it over a design utilizing only semiconductor switches were explained previ-

ously in the ac RBI section. Since an ac RPC is basically a low power ac RBI in

many respects and most features are similar, the information presented in the ac

RBI section will be relied on while describing the RPC equation development. The

ac RPC discussion is shortened to reduce the amount of repetition. If additional

information is desired please refer back to the ac RBI discussion.

The ac RPC and RBI configurations are similar; however, certain differences
will cause their specific weights to differ considerably. The mass of the therm-

al management hardware, housing, and structure will assume a greater percentage

of the RPC mass because it does not scale linearly down to the smaller RPC power
levels. This results in the specific weight of an RPC being much higher than a

RBI. In a telephone conversation with Dave Fox of Westinghouse, he indicated

that comparably rated ac and dc RPCs should have similar masses (Ref. III-34).

The data bus interface and control elements in the ac RPCs would probably be like
those in the dc units. The relay in an ac RPC would be lighter because the zero

current crossing point inherent in ac distribution eases fault current interrup-

tion; however, the mass of the ac RPC must include the mass of a back-to-back

pair of semiconductor switches and their drivers. Based on this discussion the

masses of many of the elements in an ac RPC were obtained from the SSF dc RPC

mass breakdowns and they were utilized as a basis for the following equation de-

velopment (Ref. III-6). The ac RPC mass breakdowns are located in Appendix A on

page A-12 and A-13.
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The ensuing paragraphs explain the formulation of single-phase and 3-phase

ac RPC equations. Their development is explained by using technical descriptions

and graphs. The variables used in these discussions are listed in Table 21.

IARP

3ARP

ARPE

ARPAM

ARPRM

ARPP o

ARPV o

Table 21

Ac RPC Model Variable Definitions

Ac RPC Mass

Ac RPC Mass

Ac RPC Efficiency (99.85%)

Ac RPC Available Modules

Ac RPC Required Modules

Ac RPC Power Output (kWe)

Ac RPC Voltage Output (Vrms)

Mass Coefficient

]ARP=O.38*((EXP(O.OOO3/(I-ARPE)))/I.22)*(ARPAM/ARPRM)*ARPPo*(ARPPo/ARPRM) °'Is*

(ARPVo/120) °'°I

3ARP=O.5*((EXP(O.OOO3/(I-ARPE)))/1.22)*(ARPAM/ARPRM)*ARPPo*(ARPPo/ARPRM) "°'2.

(ARPVo/120) °'°I

The ac RPC mass breakdowns used the SSF dc RPC mass breakdowns as a start-

ing point. Many items in dc and ac RPCs will be the same, so dc RPC component
masses were also used for the ac RPC case. The relay in an ac RPC will be small-

er, but an ac RPC contains a back-to-back pair of semiconductor switches. The

mass differences resulting from these design differences were incorporated into

the ac RPC mass breakdowns. To complete the ac RPC mass breakdowns, mass gains

occurring as a result of minor hardware advancements were included. The above
mass coefficients were then determined from these ac RPC mass breakdowns.

The mass of a 3-phase ac RPC will be higher than a single-phase RPC because

the 3-phase design requires two additional relay contacts and two more back-to-

back pairs of semiconductor switches. However, the control logic and thermal

management hardware masses are similar in both designs and the packaging weight
difference becomes less as the RPC size grows, so the relative difference in mass

becomes less as the power level rises. Single- and 3-phase RPC specific weights

are compared in Figure 46.

Efficiency Factor

IARP=O.38*((EXP(O.OOO3/(I-ARPE)))/I.22)*(ARPAM/ARPRM)*ARPPo*(ARPPo/ARPRM) "°'15.

_ARPVo/120) °'°I
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3ARP:O. 5"( (EXP(O. 0003/(I-ARPE) ))/1.22 )*(ARPAM/ARPRM)*ARPPo* (ARPPo/ARPRM) °'2.

(ARPVo/120) °'°I

The factor underlined above estimates the change in specific weight occur-

ring with a change in ac RPC efficiency. The efficiency of an ac RPC was assumed

to be the same as a dc RPC; the reactive parasitics associated with ac operation

were expected to be negligible. The efficiency of an ac RPC can be increased by
enlarging the conduction area of the relay contacts and semiconductor switches.

This will reduce their resistance. The mass of the relay contacts and semicon-

ductor switches will increase, but the thermal management hardware mass declines.

Other RPC elements must be redesigned to conform to the new relay, semiconductor,

and thermal management hardware configurations. RPCmass estimates weregenerat-
ed for efficiencies ranging from 99.8 to 99.9% and they were used to calculate

this efficiency factor. A graph showing how RPC specific weights vary with power

is shown in Figure 47.

Redundancy Factor

IARP=O.38*((EXP(O.OOO3/(I-ARPE)))/I.22)*(ARPAM/ARPRM)*ARPPo*(ARPPo/ARPRM) "°'15.

(ARPVo/120) °'°I

3ARP=O.5*((EXP(O.OOO3/(I-ARPE)))/I.22)*(ARPAM/ARPRM)*ARPPo*(ARPPo/ARPRM) °'2.

(ARPVo/120) °'°I

A modular design approach used to improve reliability will cause the total
mass of an ac RPC assembly to rise. This mass increase is estimated by the above

factor. The actual number of modules present in the assembly is specified by the

"available modules" number; the number of modules required to deliver full power

is defined by the "required modules" value. If a system is designed with 4/3 re-

dundancy, each channel can carry up to 33% of the power. The fourth channel is

included solely to improve reliability and its mass is the penalty paid to obtain

the higher reliability.

Power Level Multiplier

IARP=O. 38*( (EXP(O.0003/( I-ARPE) ))/I. 22)*(AR PAM/AR PRM)*AR__RP_PoPP * (ARPPo/ARPRM) -o.Is,

(ARPVo/120) °'°I

3ARP=O. 5*( (EXP (0.0003/( I-ARPE) ))/I. 22)*(ARPAM/ARPRM)*AR__R_PP_oPP* (ARPPo/ARPRM) -o.2,

(ARPVo/120) °'°I

The equations can be used to calculate the mass or specific weight of the
ac RPC. When the above multiplier is included, the value that results estimates

the RPC mass. To obtain the specific weight of the RPC, remove this multiplier.

Power Level Factor

. . 0 15.
IARP--O.38* ((EXP (0.0003/( I-ARPE) ))/I. 22) *(ARPAM/ARPRM) ARPP o AR___R__<_ARPRM)""

(ARPVo/120) °'°I
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3ARP:O. 5* ((EXP (0.0003/( I-ARPE) ))/I. 22 )*(ARPAM/ARPRM) *AR PPo*ARI.A_8_EPo/ARPRM )-o.2,

(ARPVo/120) °'°I

The masses of the relay contacts and semiconductor switches in an ac RPC

increase fairly linearly with a rise in power. However, the masses of supporting

hardware elements, such as driver modules, sensors, and control logic devices,
grow at a much slower rate. This results in some economies of scale as the RPC

power level rises and causes its specific weight to decline. Because the mass

of the ancillary hardware in a 3-phase ac RPC occupies a greater portion of its

total mass, the reductions in specific weight that occur with power are greater

in this RPC design than in the single-phase RPC design. This causes the differ-

ence in the single- and 3-phase power level multiplier exponents, -0.15 and -0.2.

The difference in mass growth rates between single- and 3-phase ac RPCs can be

seen by referring back to Figure 46. An expanded view of only the single-phase

ac RPC is shown in Figure 48.

Voltage Level Factor

]ARP=O. 38* ((EXP(O.0003/( I-ARPE )))/i. 22)*(ARPAM/ARPRM) *ARPPo* (ARP Po/AR PRM) o.Is,

ARLA_R__o/120)°'°I

3ARP=O. 5* ((EXP(O. 0003/( I-ARPE) ))/I. 22) *(ARPAM/ARPRM) *ARPPo* (ARPPo/ARPRM) -o.2,

ARLA_R_P__/120)°'°I

The ac RPCs will be located near the loads; consequently, the voltages they

will experience will be lower than RBIs. This means that many effects associated

with high voltage operation, such as vacuum relay breakdown, presumably will not

occur. Some effects that will occur as the voltage across an RPC increases will

also be offsetting. The RPC devices and internal wiring will require additional

insulation to withstand the higher voltage stresses. While the RPC voltages are

not high enough to warrant connecting the semiconductor switches in series, their

masses will probably rise slowly to maintain comparable conducting properties at

higher voltages. These factors will cause the mass of the RPC to rise. However,

assuming the RPC power level remains constant, the current carried by the relay
contacts will decline as the voltage rises. This will lower the mass of the re-

lay contacts and relay driver. After considering the weight increases occurring

from added insulation and semiconductor design changes against the reduction in

relay mass, it appears the mass of a complete ac RPC will gradually rise as volt-

age levels rise. The results of this evaluation are displayed in Figure 49.

3.2 Power Conditioning Component Models

A complete power conditioning component model is created by linking indi-

vidual stages and combining these with ancillary component hardware. The equa-

tions must undergo a few changes to integrate them into a component model. The

power and voltage levels for each stage must be computed within their respective
equations to obtain the most accurate mass estimates. These values are calculat-

ed by inserting the efficiencies of the subsequent stages and including the volt-

age coefficients associated with inversion and rectification. The equations that

define the voltage relationships for single- and 3-phase rectification are shown

below. These e(luations are simply reversed to obtain the corresponding relation-

ships for inversion.
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Single-Phase: Vdc:O.9*Vrms

3-Phase: Vdc=1.35*Vrms

where: Vdc = the output dc voltage from a rectifier or the input dc

voltage to a chopper
Vrms = the line-to-line ac voltage from a chopper or the input

line-to-line ac voltage fed to a rectifier

The subsequent component mass equations incorporate these voltage factors and the
efficiencies of the interacting stages. Because the parasitic power demands of

a component are supplied through the input filter, its mass equation also in-
cludes a value for this. The masses of the various stages and ancillary hardware

are calculated for both single- and 3-phase designs. Based on the numerical

input for the number of phases, "I" or "3", the appropriate values are selected.

3.2.1 DC/DC Converter Model

The dc/dc converter model incorporates equations for a chopper, inverter
transformer, and rectifier stage. The model is completed with the addition of

input and output dc filtering and ancillary hardware equations. Figure 50 shows

a diagram of the dc/dc converter stages.

Variable

Voltage DC m

Input

JControl & MoniloringI
.......................................l Subsystem I ......................................

:H HH Output
Input Cho per Transformer Rectifier
Filter Filter

Variable

m Voltage DC

Output

Figure 50 DC/DC Converter Dlogrom

Application Notes: Dc/dc converters are used to change the input dc voltage to

a higher or lower value. They also provide isolation between the input and out-

put to reduce transmitted interference. The dc/dc converter models can be used
to estimate the masses of converters that directly follow a dc power source or

those located near the load within a distribution network. In the two applica-

tions, the main difference is expected to be the filtering demands. The filter

requirements will be determined by the particular applications; however, a ripple

factor of 5% is suggested for converters that follow sources and feed industrial

power devices such as heaters, and I% is proposed for converters that distribute

power to sensitive user loads.

The dc/dc converter models described in this report incorporate a resonant

converter topology. A resonant converter exhibits low mass and high efficiency,
and it is well suited for high frequency, space based applications. It also uses

zero current switching, which reduces switching losses and switching induced EMI.

These items improve chopper efficiency End cut the m_ss of the dc filter stages.
There have been concerns raised about the technological maturity of the resonant

converter. The resonant converter is a recent development and it does have a
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higher parts count and tend to be morecomplex. However, the models here are for
componentsexpected to available after the year 2000 and sufficient time should
be available to fully resolve any resonant converter technology issues.

Spreadsheet Printout: Figure 51 is a printout of the dc/dc converter spreadsheet
model. Subsequent sections explain the operation of this spreadsheet.

Model Input Parameter Ranqes: The spreadsheet is designed to cover a specific

range of input parameters. Using input parameters outside of these ranges could
result in inaccurate mass estimates and it is not recommended. Table 22 lists

appropriate input ranges and the values recommended to yield the best results.

It also identifies the sources that should be consulted for certain items. It

is considered to be the users responsibility to select nonconflicting input
parameters that are suitable for the application and operating conditions.

107



X

Z
0
U
U

U

,-4

em

108



x

Z
0
r.)
U
C_
c.)

I.i

O_ _ *

w j • _ 010 E., _10_ _ _

v

I:I

., u ao_ _i _

:_ _ _ o_ _o _-

v 0 : 0 -,-I @ _"

"I i

-_ o _ '

° _,
'_ 0 ... A4J _ ..-. _ L,--

e
0 o','* oi

109



X

Z
0
cJ
cJ

(J
r_

110



Table 22

DC/DC Converter Model Input Parameter Ranges

DC/DC Converter

Input Parameter

Output Power Level

Input Voltage Level (I)

Output Voltage Level (I)

Number of Phases

Recommended

Input Range

0.5 to 250 kWe

20 to IO,O00 Vdc
(Refer to Table 3 for

voltages below 120 Vdc)

20 to 10,000 Vdc

(Refer to Table 3 for

voltages below 120 Vdc)

lor3

Ripple Factor Percentage 0.5 to 8%

Enclosure Type (FH or CP)

Available Modules

Finned Heat Exchanger (FH)

Coldplate (CP)

Equal to or Greater

than Required Modules

Required Modules No Limit

Inversion Frequency

Chopper Efficiency

10 to 60 kHz

(Refer to Table 4)

Normal Range: 95 to 97%
96% is Recommended

Transformer Efficiency Range: 97.5 to 99.5%
99% is Recommended

Rectifier Efficiency Normal Range: 97.5 to 99.5%
98.5% is Recommended

DC Filter Efficiency

Coldplate Temperature (2)

Range: 99.0 to 99.9%

99.5% is Recommended

10 to 100 ° C

40' C Suggested for FH Enclosure

60" C Suggested for CP Enclosure

Coldplate to Radiator Temperature Delta 0 to 20 ° C
16.7 ° C is Recommended

1. The voltage step ratio should not exceed the limits defined in Table 6. T_ obtain the voltage step ratio,
divide the higher, input or output voltage by the other, input or output vottgge.

2. Because the Coldplate Enclosure has a tower thermal resistance than the Finned Heat Exchartger Enclosure,
the coidptate ten_erature can be set 20 ° C higher when the Cotdplate Enclosure is selected.
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Model Equation Listinq: Table 23 defines the variables utilized in the dc/dc

converter model equations.

Po

P,

VI

Vo

AM

RM

IF

RF

IIFM

31FM

ICM

3CM

ITM

3TM

IRM

3RM

IOFM

30FM

FE

CE

TE

RE

ICCM

3CCM

Table 23

DC/DC Converter Model Variable Definitions

Output Power Level (kWe)

Input Power Level (kWe)

Voltage Input (Vdc)

Voltage Output (Vdc)

Available Modules

Required Modules

Inversion Frequency (kHz)

Ripple Factor (%)

Single-Phase Input Dc Filter Mass (kg)

3-Phase Input Dc Filter Mass (kg)

Single-Phase Chopper Mass (kg)

3-Phase Chopper Mass (kg)

Single-Phase Transformer Mass (kg)

3-Phase Transformer Mass (kg)

Single-Phase Rectifier Mass (kg)

3-Phase Rectifier Mass (kg)

Single-Phase Output Dc Filter Mass (kg)

3-Phase Output Dc Filter Mass (kg)

Dc Filter Efficiency (%)

Chopper Efficiency (%)

Transformer Efficiency (%)

Rectifier Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)
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1OHM

3CMM

1CMP

3CMP

DDCEM

DDCE

DDCSE

CV

CH

CW

CL

FHEM

CPEM

RA

RAM

TD

T

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control and Monitoring Mass (kg)

Single-Phase Control and Monitoring Power (kg)

3-Phase Control and Monitoring Power (kg)

DC/DC Converter Electronics Mass (kg)

DC/DC Converter Efficiency (%)

DC/DC Converter Stage Efficiency (%)

Component Volume (m3)

Component Height (m)

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)

Coldplate Based Enclosure Mass (kg)

Radiator Area (m2)

Radiator Mass (kg)

Coldplate to Radiator Temperature Delta (°C)

Coldplate Temperature (°C)

The EXCEL model "DCDCCONR.XLS" is for a resonant based dc/dc converter.
The following equations are contained in this model.

DC/DC Converter Component Equations

Px=Po/DDCE

Single- and 3-Phase: DDCSE=FE*CE*TE*RE*FE

Single-Phase: DDCE=Po/((Po/FE/RE/TE/CE+ICMP/IOOO)/FE )

3-Phase: DDCE=Po/((Po/FE/RE/TE/CE+3CMP/IOOO)/FE)

Single-Phase: DDCEM=IIFM+ICM+ITM+IRM+IOFM+ICCM+ICMM

3-Phase: DDCEM=31FM+3CM+3TM+3RM+3OFM+3CCM+3CMM
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DC/DCConverter Input Dc Filter Equations

I I FM=4700*(I/( RF/O.01)o.s), ( ( 1-0.995)/( i- FE))* (AM/RM)*(Po/FE/RE/TE/CE+]CMP/I000)*

( (FE*V_)2+0.000001)*(20/I F)

31FM=4700*( I/( RF/O.01)o.s), ( (1- O.995)/( I- FE))* (AM/RM)* (Po/FE/RE/TE/CE+3CMP/1000)*

( (FE*VI)2+0. 000001)* (6.7/IF)

DC/DCConverter Chopper Equations

ICM=O.39* ( (EXP(0.025/( i- CE)) )/I. 86)* (AM/RM)* (Po/FE/RE/TE)* ( (Po/RM/FE/RE/TE)-o.o5

• (VI*FE/(V_*FE- 2) )7*EXP(V_*FE/40000)* (20/I F)°'4s*EXP(Po°'1*I F/160) )

3CM=O.4* ( ( EXP(0.025/(I-CE) ) )/1.86) * (AM/RM)*(Po/FE/RE/TE)* ( ( Po/RM/FE/RE/TE)-o.o5

• (V,*FE/(V_*FE-2))7*EXP(V_*FE/40000)*(20/I F)°'4s*EXP(Po°'1*IF/160))

DC/DCConverter Transformer Equations

ITM=I. 27*( (EXP(0. 003/( I -TE)) )/I. 35)* (AM/RM)*(Po/FE/RE)*( (Po/RM/FE/RE)-o.oa

• EXP(0.9*V_*FE*CE/2OOOOO)*EXP(Vo/O.9/FE/RE/200000)*I F'°'47+(I F/300)1"4)

3TM=2.75"((EXP(0. 003/(I-TE) ))/i. 35)* (AM/RM)*(Po/FE/RE)*((Po/RM/FE/RE)°'2s

• EXP( 1.35*V_*FE*CE/200000)* EXP(Vo/I. 35/FE/RE/200000)* IF"o.47+(IF/300 )1.4)

DC/DC Converter Rectifier Equations

IRM:O. I*( (EXP (0.005/(I-RE) ))/I. 4)* (AM/RM)* (Po/FE)* (Vo/FE/(Vo/FE-2))6

•EXP(Vo/FE/80000 )

3RM:O. 11"( (EXP(O. 005/(I-RE)) )/I.4)* (AM/RM)* (Po/FE)* (Vo/FE/(Vo/F E-2))6

*EXP(Vo/FE/80000)

DC/DC Converter Output Dc Filter Equations

IOFM=4700" (I/(RF/O. 01 )o.s),((1-0.995 )/(I -FE) )*(AM/RM)* Po*(Voz+O. 000001 )* (20/IF)

30FM=4700" (I/(RF/O. 01)o.s),((1-0.995 )/( I-FE) )* (AM/RM)*Po* (Vo2+0" 000001 )*(6.1/IF)

DC/DC Converter Conductor and Connector Equations

ICCM= (AM/RM)* (0.028* ((Po*1000)/Vo)+0.028* (((Po*IO00)/DDC E)/V_))

3CCM= (AM/RM) * ((3°'s/2)*0.028* ((Po*1000 )/Vo)+(3°s/2 )*0.028* (((Po*I000 )/DDCE )/V l))

DC/DC Converter Control and Monitoring Equations

ICMM=AM* (I.4+0.9* (Po/RM)°'3+0.25*(Po/RM) °'3)

3CMM=AM* (2+2.5* (Po/RM )o.3+0"75* (Po/RM )o.3)
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ICMP:AM*55.6*(Po/RM) °'I

3CMM=AM*79.4*(Po/RM) °'I

DC/DC Converter Volume and Dimension Equations

CV:DDCEM/(O.342*IO00)

CH=O. 7*CV °'3333

CW:I. I*CV °'3333

CL:I .3*CV °'3333

DC/DC Converter Enclosure Equations

FHEM=44.26*CV°'6_6+27*(CL*CW)

CPEM=44.26*CV°'6666+IO.25*(CL*CW)

DC/DC Converter Radiator Equations

RA=(I.1212E+IO*(Po/DDCE-Po)/((T+273-TD)4-2504)

RAM=4.159*RA

3.2.2 Inverter Model

The dc/ac inverter model integrates equations for a chopper and inverter
transformer stage. An input dc filter, output ac filter, and ancillary hardware
are added to obtain a complete inverter model. Figure 52 shows a diagram of the
dc/ac inverter stages.

Variable

Voltage DC m

Input

Control #., MonitoringJ
....................................J Subs_stenn J.....................................

.......i i

Filter Chopper Transformer Filter

Figure 52 DC/AC Inverter Diogrom

Variable

__ Voltage,
Variable

Frequency

AC Output

Application Notes: Dc/ac inverters are utilized to convert a dc input into an
ac waveform. The transformer stage allows the generated ac voltage to be changed
to a higher or lower value and also provides isolation between the input and out-
put to reduce transmitted interference. These inverter models can be used to
estimate the masses of inverters following a dc power source or those located
near a load. Indications are the main difference in these two cases will be the
filtering demands. Each application will have specific filtering requirements;
however as a starting point, a ripple factor of 5% is suggested for inverters
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that follow sources and feed industrial power devices such as motors or heaters,

and I% is proposed for inverters supplying sensitive loads.

The dc/ac inverter models described in this section utilize a resonant con-

verter topology. A resonant converter is lightweight and efficient, and well

suited for high frequency, space based applications. This topology also employs

zero current switching, which reduces switching losses and switching induced EMI.

These items improve chopper efficiency and cut the mass of the input dc filter

stage. There have been concerns raised about the technological maturity of the
resonant converter. The resonant converter is a recent development and it does

have a higher parts count and tend to be more complex. However, this model is
for inverters deployed after the year 2000 and enough time should be available

to fully resolve any resonant converter technology issues.

Spreadsheet Printout:
shown in Figure 53.
sections.

A printout of the dc/ac inverter spreadsheet model is
The operation of this spreadsheet is explained in later

Model Input Parameter Ranqes: The spreadsheets are designed to cover a specific

range of input parameters. Using input parameters outside of these ranges could
result in inaccurate mass estimates and it is not recommended. Table 24 lists

suitable input ranges and the values suggested for best results. It also identi-

fies tables containing additional information. It is considered to be the users

responsibility to select nonconflicting input parameters that are suitable for

the application and operating conditions.
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Table 24

DC/AC Inverter Model Input Parameter Ranges

DC/AC Inverter

Input Parameter

Output Power Level

Input Voltage Level (I)

Recommended

Input Ranqe

0.5 to 250 kWe

20 to 10,000 Vdc

(Refer to Table 3 for

voltages below 120 Vdc)

Output Voltage Level (I)

Number of Phases

Ripple Factor Percentage

Enclosure Type (FH or CP)

20 to 10,000 Vrms

I or 3

0.5 to 8%

Finned Heat Exchanger (FH)

Coldplate (CP)

Available Modules Equal to or Greater
than Required Modules

Required Modules

Inversion Frequency

No Limit

10 to 60 kHz

(Refer to Table 4)

DC Filter Efficiency Range: 99.0 to 99.9%
99.5% is Recommended

Chopper Efficiency
Normal Range: 95 to 97%

96% is Recommended

Transformer Efficiency Range: 97.5 to 99.5%
99% is Recommended

AC Filter Efficiency Range: 99.0 to 99.9%
99.5% is Recommended

Coldplate Temperature (2)
10 to 100" C

40 ° C Suggested for FH Enclosure

60 ° C Suggested for CP Enclosure

Coldplate to Radiator Temperature Delta
0 to 20° C

16.7 ° C is Recommended

1. The voltage step ratio should not exceed the limits defined in Table 6. To obtain the voltage step ratio,

divide the higher, input or output voltage by the other, input or output voltage.

2. Because the Cotdplate Enclosure has a lower thermal resistance than the Finned Heat Exchanger Enclosure,

the coldplate temperature can be set 20" C higher when the Coldplate Enclosure is selected.
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Model Equation Listinq: Table 25 defines the variables utilized in the dc/ac
inverter model equations.

Po

Pl

VI

Vo

AM

RM

IF

RF

IIFM

31FM

ICM

3CM

ITM

3TM

]OFM

30FM

FE

CE

TE

ICCM

3CCM

ICMM

3CMM

]CMP

Table 25

DC/AC Inverter Model Variable Definitions

Output Power Level (kWe)

Input Power Level (kWe)

Voltage Input (Vdc)

Voltage Output (Vdc)

Available Modules

Required Modules

Inversion Frequency (kHz)

Ripple Factor (%)

Single-Phase Input Dc Filter Mass (kg)

3-Phase Input Dc Filter Mass (kg)

Single-Phase Chopper Mass (kg)

3-Phase Chopper Mass (kg)

Single-Phase Transformer Mass (kg)

3-Phase Transformer Mass (kg)

Single-Phase Output Ac Filter Mass (kg)

3-Phase Output Ac Filter Mass (kg)

Filter Efficiency (%)

Chopper Efficiency (%)

Transformer Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control,and Monitoring Mass (kg)

Single-Phase Control and Monitoring Power (kg)
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3CMP

DAIEM

DAIE

DAISE

CV

CH

CW

CL

FHEM

CPEM

RA

RAM

TD

T

3-Phase Control and Monitoring Power (kg)

DC/AC Inverter Electronics Mass (kg)

DC/AC Inverter Efficiency (%)

DC/AC Inverter Stage Efficiency (%)

Component Volume (m3)

Component Height (m)

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)

Coldplate Based Enclosure Mass (kg)

Radiator Area (m2)

Radiator Mass (kg)

Coldplate to Radiator Temperature Delta (°C)

Coldplate Temperature (°C)

The EXCEL model "DCACCONR.XLS" is for a resonant based dc/ac inverter. The

following equations are contained in this model.

DC/AC Inverter Component Equations

PI=Po/DAIE

Single- and 3-Phase: DAISE:FE*CE*TE*FE

Single-Phase: DAIE:Po/((Po/FE/TE/CE+ICMP/IOOO)/FE)

3-Phase: DAIE=Po/((Po/FE/TE/CE+3CMP/IOOO)/FE)

Single-Phase: DAIEM=IIFM+ICM+]TM+IOFM+ICCM+ICMM

3-Phase: DAIEM=31FM+3CM+3TM+3OFM+3CCM+3CMM

DC/AC Inverter Input Dc Filter Equations

IIFM=4700*(I/(RF/O.O])°'5)*((I-O.gB5)/(I"FE))*(AM/RM)*(Po/FE/TE/CE+]CMP/I000)*

((FE*V_)z+0.000001)*(20/IF)

_,IF_=4}OO*(1/ (RF/O.OI )°'s)*((1-O.995 )/(1-FE) )*(AM/RM)*(Po/FE/TE/CE+3CMP/IO00)*

((FE*V_)2+0.000001 )*(6.7/I F)
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DC/ACInverter Chopper Equations

ICM=O.39"( (EXP(O.025/(I-CE)))/I. 86)* (AM/RM)*(Po/FE/TE)*((Po/RM/FE/TE)°'°5

* (Vz*FE/(Vx*FE-2) )7*EXP(V_*FE/40000)*(20/I F)°'_5*EXP(Po°'1*IF/160) )

3CM=O.4" ((EXP(O.025/(I-CE)))/I. 86)* (AM/RM)*(Po/FE/TE)*( (Po/RM/FE/TE)°'°5
* (V_*FE/(V_*FE-2))7*EXP(V_*FE/40000)*(20/I F)°'_s*EXP(Po°'1*I F/160) )

DC/ACInverter Transformer Equations

ITM=1.27* ( (EXP(O.003/(1-TE) ) )/1.35)* (AM/RM)*(Po/FE)* ( (Po/RM/FE)"°'°8

*EXP(O.9*Vz*FE*CE/200000)*EXP(Vo/O.9/FE/200000)* I F°'_7+( IF/300) I ._)

3TM=2.75*((EXP(0.003/( I -TE)) 7/i. 35)* (AM/RM)*(Po/FE)*( (Po/RM/FE)-o.2s
* EXP(I. 35*VI*FE*CE/200000)*EXP(Vo/I. 35/FE/200000)* I F-o._7+( I F/300) I"_)

DC/ACInverter Output Ac Filter Equations

10FM=O.1"( (I-O. 995)/( i- FE))* (AM/RM)*Po*(Po/RM)-0.o3,(i F/20)-o.6

30FM=O.105"( (I-O. 995)/( I- FE))* (AM/RM)*Po*(Po/RM)°" o3,( IF/20) °'6

DC/ACInverter Conductor and Connector Equations

ICCM=(AM/RM)* (0.028* ( (Po*1000)/Vo)+0.028*( ( (Po*1000)/DAIE)/V_) )

3CCM=(AM/RM)* ((3°'s/2) *0. 028*( (Po*1000)/Vo)+ (3°s/2) *0.028* ( ( (Po*1000)/DAIE)/V_) )

DC/ACInverter Control and Monitoring Equations

1CMM=AM*(I. 4+0.9* (Po/RM)°'3+0.25*(Po/RM)o.3)

3CMM=AM*(2+2.5* (Po/RM)°3+0.75* (Po/RM)o.3)

ICMP=AM*55.6*(Po/RM)°'I

3CMM=AM*79.4*(Po/RM)°'_

DC/ACInverter Volumeand Dimension Equations

CV-DAIEM/(0.342"1000)

CH=O.7,CV°.3333

CW=I. l*CV 0"3333

CL- I.3*CV °3333

DC/AC Inverter Enclosure Equatiors

FHEM=44.26"CV°'6666+27 *(CL*CW)
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CPEM=44.26*CV°'666%]0 • 25* (CL*CW)

DC/AC Inverter Radiator Equations

RA=(I. 1212E+I0*(Po/DAIE-Po)/((T+273-TD) 4-2504)

RAM:4.159*RA

3.2.3 AC/AC Frequency Converter Model

The ac/ac frequency converter model is based on a dc link frequency con-
verter design. The ac input is rectified and lightly filtered to obtain dc, the
dc is then fed to an inverter to obtain a new ac frequency output. The model

contains the same stages as a dc/dc converter with the addition of an intermedi-
ate dc bus filter. The sequence of the stages is rearranged to obtain an alter-

nate function. With the addition of input and output filtering and ancillary

hardware, the model is completed. Figure 54 shows a diagram of the ac/ac fre-

quency converter stages.

Voriable

Voltage

Vorioble -

Frequency

AC Input

I Control & Uor_toring
.............................................l Sul_svstern .............................................

: !

_Rectifier_ Chopper _ Transiormer _

Figure 54 AC/AC Frequency Converter Diogrom

Voricble

Voltoge,
- Vorlcble

Frequency

AC Output

Application Notes: Ac/ac frequency converters are used to change an incoming ac

frequency to a higher or lower value. The internal transformer also isolates the

input and output, thus reducing transmitted interference. The frequency convert-
er model described here is best suited for estimating the masses of converters

directly following an alternator power source. In this application, the alter-

nator's low frequency output is typically stepped up to a higher frequency for

transmission. The primary purpose of this frequency conversion is to reduce the

mass of subsequent distribution transformers. This frequency converter model can
also be used at the load end if the input frequency is relatively low, 2 kHz or

less, and the waveform has a low harmonic content. These models are not suitable

for high frequency inputs. Frequency converters designed to receive high fre-

quency inputs are typically referred to as ac load receivers and they use a dif-

ferent topology.

The coefficients used in the input and dc bus filter equations were reduced

to one-tenth of their previous values to yield lower, hopefully more realistic

filter masses for this application. The ac filter design described in this re-

port is actually a series harmonic trap. The primary purpose of a harmonic trap

is to prevent a resonant circuit from amplifying external harmonics. The passive
rectif'e" stag( cert_i[ed in the frequency converter is not capable of amplifying

harmonics; and furthermore, the low harmonic content exhibited by an alternator

would probably deter harmonic amplification anyway. Because alternators can tol-
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erate reasonably high levels of harmonic distortion, it should also be relatively
easy to suppress the harmonics reflected back to the alternator by the rectifier.
The combined filtering of the input and intermediate dc bus filters should be
adequate to prevent harmonic amplification in the subsequent resonant converter
stage. A ripple factor of 5%for the intermediate dc bus filter is considered
sufficient to prevent interference between the rectifier and resonant converter
stages. It is necessary to define power quality requirements and generate low
frequency filter designs consistent with this type of application to improve
these filter massestimates. Most of the dc and ac filter designs noted to date
are oriented toward high frequency uses. However, low frequency filter designs
will be required in these types of locations even if high frequency distribution
is ultimately selected.

_preadsheet Printout: Figure 55 is a printout of the ac/ac frequency converter

spreadsheet model. Later sections describe this spreadsheet and its operation.

Model Input Parameter Ranqes: The results generated by this spreadsheet are only

valid for a certain range of input parameters. Inaccurate mass estimates may re-
sult if input parameters outside of the ranges defined in Table 26 are used and

it is not recommended. Table 26 also identifies the values that should yield the
best results, and lists sources that should be consulted in certain cases. The

user is responsible for selecting input parameters that do not conflict and are

reasonable for the application and operating conditions.
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Table 26

AC/AC Frequency Converter Model Input Parameter Ranges

AC/AC Frequency Converter

Input Parameter

Output Power Level

Input Voltage Level (I)

Output Voltage Level (I)

Input Frequency

Output Frequency

Enclosure Type (FH or CP)

Available Modules

Required Modules

Number of Input Phases

Number of Output Phases

DC Bus Ripple Factor Percentage

AC and DC Filter Efficiencies

Rectifier Efficiency

Chopper Efficiency

Transformer Efficiency

Coldplate Temperature (2)

Coldplate to Radiator Temperature Delta

Recommended

Input Ranqe

0.5 to 250 kWe

20 to 10,000 Vrms

(Refer to Tables 3 and 10

for voltages below 120 Vrms)

20 to IO,O00 Vrms

60 Hz to 2 kHz

10 to 60 kHz

(Refer to Table 4)

Finned Heat Exchanger (FH)

Coldplate (CP)

Equal to or Greater

than Required Modules

No Limit

I or 3

| or 3

0.5 to 8%

Range: 99.0 to 99.9%
99.5% is Recommended

Normal Range: 97.5 to 99.5%
98.5% is Recommended

Normal Range: 95 to 97%
96% is Recommended

Range: 97.5 to 99.5%
99% is Recommended

IO to 100" C

40" C Suggested for FH Enclosure

60" C Suggested for CP Enclosure

0 to 20" C

16.7 ° C is Recommended

1. The voltage step ratio should not exceu,_:l the limits defined in Table 6. To obtain the voltage st@ ratio,
divide the higher, ir_ut or output voltage by the other, input or output-voltage.

2. Because the Coldplate Enclosure has a lower thermal resistance than the Finned Meat Exchanger Enclosure,

the coldplate temperature can be set 20' C higher when the Cotdplate Enclosure is selected.

129



Model Equation Listinq: Table 27 defines the variables utilized in the ac/ac

frequency converter model equations.

PO

PI

VI

Vo

AM

RM

IF

OF

RF

IIFM

31FM

IRM

3RM

IDCFM

3DCFM

ICM

3CM

]TM

3TM

IOFM

30FM

FE

RE

CE

Table 27

AC/AC Frequency Converter Model Variable Definitions

Output Power Level (kWe)

Input Power Level (kWe)

Voltage Input (Vdc)

Voltage Output (Vdc)

Available Modules

Required Modules

Input Frequency (kHz)

Output Frequency (kHz)

Dc Bus Ripple Factor (%)

Single-Phase Input Filter Mass (kg)

3-Phase Input Filter Mass (kg)

Single-Phase Rectifier Mass (kg)

3-Phase Rectifier Mass (kg)

Single-Phase Dc Bus Filter Mass (kg)

3-Phase Dc Bus Filter Mass (kg)

Single-Phase Chopper Mass (kg)

3-Phase Chopper Mass (kg)

Single-Phase Transformer Mass (kg)

3-Phase Transformer Mass (kg)

Single-Phase Output Dc Filter Mass (kg)

3-Phase Output Dc Filter Mass (kg)

Ac and Dc Filter Efficiencies (%)

Rectifier Efficiency (%)

Chopper Efficiency (%)
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TE

1CCM

3CCM

]CMM

3CMM

1CMP

3CMP

AACEM

PACE

AACSE

CV

CH

CW

CL

FHEM

CPEM

RA

RAM

TD

T

Transformer Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control and Monitoring Mass (kg)

Single-Phase Control and Monitoring Power (kg)

3-Phase Control and Monitoring Power (kg)

AC/AC Frequency Converter Electronics Mass (kg)

AC/AC Frequency Converter Efficiency (%)

AC/AC Frequency Converter Stage Efficiency (%)

Component Volume (m3)

Component Height (m)

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)

Coldplate Based Enclosure Mass (kg)

Radiator Area (m2)

Radiator Mass (kg)

Coldplate to Radiator Temperature Delta (°C)

Coldplate Temperature (°C)

The EXCEL model "ACACFREQ.XLS" is for a dc link resonant based ac/ac
frequency converter. The following equations are contained in this model.

AC/AC Frequency Converter Component Equations

PI=Po/AACE

Single- and 3-Phase: AACSE:FE*RE*FE*CE*TE*FE

Single-Phase: AACE=Po/((PoIFE/TE/CE/PE/RE+ICMP/IOOO)/FE )

3-Phase: AACE=Po/((Po/FE/TE/CE/FE/RE+3CMP/IOOO)/FE)
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Single-Phase: AACEM:11FM+IRM+IDCFM+ICM+ITM+IOFM+ICCM+ICMM

3-Phase: AACEM=31FM+3RM+3DCFM+3CM+3TM+3OFM+3CCM+3CMM

AC/AC Frequency Converter Input Ac Filter Equations

IIFM=O.OI*((I-O.B95)/(I-FE))*(AM/RM)*(Po/FE/TE/CE/FE/RE+ICMP/IO00)*

(Po/RM/FE/TE/CE/FE/RE+ICMP/RM/IOOO)°°3*(IF/20) "°'6

31FM:O.OIO5*((I-O.gg5)/(I-FE))*(AM/RM)*(Po/FE/TE/CE/FE/RE+3CMP/IO00)*

(po/RM/FE/TE/CE/FE/RE+3CMP/RM/IOOO)°'°3*(IF/20) °'6

AC/AC Frequency Converter Rectifier Equations

IRM=O.I*((EXP(O.OO5/(I-RE)))/I.4)*(AM/RM)*(Po/FE/TE/CE/FE)*

(Vo/FE/TE/CE/FE/(Vo/FE/TE/CE/FE-2))6*EXP(VJFE/TE/CE/FE/80000)

3RM:O.II*((EXP(O.OOS/(I-RE)))/I.4)*(AM/RM)*(Po/FE/TE/CE/FE)*

(Vo/FE/TE/CE/FE/(Vo/FE/TE/CE/FE-2))6*EXP(Vo/FE/TE/CE/FE/80000)

AC/AC Frequency Converter Dc Bus Filter Equations

IDCFM:470*(I/(RF/O.OI)°'5)*((I-O.gB5)/(1-FE))*(AM/RM)*(Po/FE/TE/CE) *

((FE*O.g*RE*FE*Vx)2+O.OOOOOI)*(20/IF)

3DCFM:470*(]/(RF/O.OI)°s)*((I-O.995)/(I-FE))*(AM/RM)*(Po/FE/TE/CE) *

((FE*O.9*RE*FE*V_)2+O.OOOOOI)*(6.7/IF)

AC/AC Frequency Converter Chopper Equations

ICM:O.39*((EXP(O.O25/(I-CE)))/I.e6)*(AM/RM)*(Po/FE/TE)*((Po/RM/FE/TE) "°'°s*

(V_*FE*RE*FE/(V_*FE*RE*FE-2))7*EXP(V_*FE*RE*FE/40000) *

(20/OF)°-4S*EXP(Po°'I*OF/160))

3CM:O,4*((EXP(O.O25/(I-CE)))/I.86)*(AM/RM)*(Po/FE/TE)*((Po/RM/FE/TE) °'°s

• (V_*FE*RE*FE/(V_*FE*RE*FE-2))7*EXP(V_*FE*RE*FE/40000) *

(20/OF)°-4s*EXP(Po°1*OF/160))

AC/AC Frequency Converter Transformer Equations

ITM=I.27*((EXP(O.OO3/(I-TE)))/I.35)*(AM/RM)*(Po/FE)*((Po/RM/FE) "°'°B

*EXP(O.g*V_*FE*RE*FE*CE/200000)*EXP(Vo/FE/200000)*OF'°'47+(OF/300)I"4)

3TM=2.75*((EXP(O.OO3/(I-TE)))/I.35)*(AM/RM)*(Po/FE)*((Po/RM/FE) "°'25

• EXP(I.35*V_*FE*RE*FE*CE/200000)*EXP(Vo/FE/200000)*OF°'47+(OF/300) I"4)
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AC/AC Frequency Converter Output Ac Filter Equations

IOFM=0.1" ((I-0.995)/( I-FE) )* (AM/RM) *Po*(Po/RM)-o.o3,(iF/20) -o.6

30FM=0. 105" ((I-0.995 )/( I-FE) )* (AM/RM)*Po* (Po/RM)-o.o3,(IF/20) "°'6

AC/AC Frequency Converter Conductor and Connector Equations

]CCM= (AM/RM)* (0.014" ((Po*1000)/Vo) +0.042, (((Po*I000)/AACE)/V_))

3CCM= (AM/RM)* ((3°'s/2)*0.014"( (Po*1000)/Vo)+ (3°'5/2)*0.042" (((Po*I000)/AACE)/VI) )

The coefficients "0.014" and "0.042" used in these equations differ from the

coefficients "0.028" and "0.028" previously defined for components having two

voltage levels. Since the input filter, rectifier, dc bus filter, chopper and
transformer primary will be at the input voltage level and only the transformer

secondary and output filter will be at the output voltage level, this adjustment
was considered necessary to properly weight the conductor mass calculations.

AC/AC Frequency Converter Control and Monitoring Equations

ICMM:AM* (I.4+0.9* (Po/RM)°3+0.25* (Po/RM)o.3)

3CMM=AM* (2+2.5* (Po/RM)03+0.75* (Po/RM)o.3)

ICMP=AM*55.6* (Po/RM)°'I

3CMM=AM*79.4* (Po/RM)o.i

AC/AC Frequency Converter Volume and Dimension Equations

CV=AAC EM/(0.342* i000)

CH:0.7*CV 0"3333

CW=]. I*CV 0"3333

CL= I. 3*CV °'3333

AC/AC Frequency Converter Enclosure Equations

FHEM:44.26*CV°'_6+27*(CL*CW)

CPEM=44,26"CV°_66+ I0.25* (C L*CW)

AC/AC Frequency Converter Radiator Equations

RA= (I.1212E+I0" (Po/AACE-Po)/( (T+273 -TD)4-2504)

RAM=4.159*RA
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3.2.4 Transformer/Rectifier Model

The transformer/rectifier model combines the standard transformer and

rectifier stage models. Filtering and ancillary hardware are included to com-

plete the package. A diagram of the transformer/rectifier model is shown in

Figure 56.

Vor;oble

Voltoge w

AC Input

Control & Monitoring 1
.....................................J Subsystem J......................................

i ""_,

Filter Filter

Vorioble

m Voltoge,

DC Output

Figure 56 Tronsformer/Rectifier Diogrom

Application Notes: Transformer/rectifiers are utilized to change an incoming ac

voltage to an alternate value and provide a rectified dc output. The transformer

stage also isolates the input and output, which reduces the level of transmitted
interference. This transformer/rectifier model is intended primarily for appli-

cations near the load. Normally, these applications require a high voltage input

to be stepped down and rectified for distribution. However, it can also estimate
the mass of a transformer/rectifier unit that follows an alternator power source.

The main difference in the two applications is typically the output dc filter de-

sign. The characteristics of a particular application will determine its filter

requirements; however, a ripple factor of 1% is suggested for converters that

provide power to sensitive user loads, and 5% is recommended for units that fol-
low an alternator or feed industrial power devices such as heaters. This model

is only designed to accept low frequency inputs, 2 kHz or less, with a low har-
monic content. It is not designed to accept a high frequency input. Units con-

figured to accept high frequency inputs are generally referred to as dc load re-
ceivers and they incorporate a resonant tank circuit.

The coefficient in the input filter equation was cut to one-tenth of the

value specified in the ac filter equations listed in section 3.1.5. This will

yield a filter mass that is more consistent with this application. The ac filter

design described in section 3.1.5 is a series harmonic trap and its main purpose

is to prevent the resonant circuit in the chopper from amplifying external har-
monics. The rectifier stage in the transformer/rectifier unit does not contain

a resonant circuit, so it is not capable of amplifying harmonics. The transform-
er also acts as a filter and it limits the noise reflected back to the input by

the rectifier. Finally, alternators can tolerate fairly high levels of harmonic
distortion so it is not necessary to completely suppress these harmonics anyway.

To improve these filter mass estimates, system power quality requirements must
be defined and low frequency filter designs suitable for this type of application

must be generated. Most of the ac filter designs noted to date are intended for

high _reRuency uses.
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Spreadsheet Printout: A printout of the transformer/rectifier model is shown in
Figure 57. It is described in later sections.

Model Input Parameter Ranqes: The results generated by this spreadsheet are only

valid for a certain range of input parameters. Inaccurate mass estimates may re-
sult if input parameters outside of the ranges defined in Table 28 are used and

it is not recommended. Table 28 also identifies the values that should yield the

best results, and lists sources that should be consulted for certain input param-
eters. The user is responsible for selecting input parameters that do not con-

flict and are reasonable for the application and operating conditions.
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Table 28

Transformer/Rectifier Unit Model Input Parameter Ranges

Transformer/Rectifier Unit

Input Parameter
Recommended

Input Ranqe

Output Power Level 0.5 to 250 kWe

Input Voltage Level (I) 20 to 10,000 Vrms

Output Voltage Level (I) 20 to 10,000 Vdc

(Refer to Table 3 for

voltages below 120 Vdc)

Number of Phases 1or3

Ripple Factor Percentage 0.5 to 8%

Available Modules Equal to or Greater

than Required Modules

Required Modules No Limit

Transformer Frequency 60 Hz to 2 kHz

AC and DC Filter Efficiencies Range: 99.0 to 99.9%
99.5% is Recommended

Transformer Efficiency Range: 97.5 to 99.5%
99% is Recommended

Rectifier Efficiency Normal Range: 97.5 to 99.5%
98.5% is Recommended

Coldplate Temperature (2) ]0 to 100" C

40 ° C Suggested for FH Enclosure

60" C Suggested for CP Enclosure

Coldplate to Radiator Temperature Delta 0 to 20" C

16.7 ° C is Recommended

Enclosure Type (FH or CP) Finned Heat Exchanger (FH)

Coldplate (CP)

1. The voltage step ratio should not exceed the Limits defined in TabLe 6. To obtain the voltage step ratio,
divide the higher, input or output voltage by the other, input or outl_Jt voltage.

2. Because the CoLdplate EncLosure has a Lower thermal resistance than the Finned Heat Exchanger EncLosure,
the cotdplate temperature can be set 20" C higher when the Cotdptate EncLosure is selected.
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Model Equation Listinq" Table 29 defines the variables utilized in the trans-
former/rectifier unit model equations.

PO

Px

V,

Vo

AM

RM

TF

RF

IIFM

31FM

ITM

3TM

IRM

3RM

IOFM

30FM

FE

TE

RE

ICCM

3CCM

ICMM

3CMM

ICMP

Table 29

Transformer/Rectifier Unit Model Variable Definitions

Output Power Level (kWe)

Input Power Level (kWe)

Voltage Input (Vdc)

Voltage Output (Vdc)

Available Modules

Required Modules

Transformer Frequency (kHz)

Ripple Factor (%)

Single-Phase Input Ac Filter Mass (kg)

3-Phase Input Ac Filter Mass (kg)

Single-Phase Transformer Mass (kg)

3-Phase Transformer Mass (kg)

Single-Phase Rectifier Mass (kg)

3-Phase Rectifier Mass (kg)

Single-Phase Output Dc Filter Mass (kg)

3-Phase Output Dc Filter Mass (kg)

Ac and Dc Filter Efficiencies (%)

Transformer Efficiency (%)

Rectifier Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control and Monitoring Mass (kg)

Single-Phase Control and Monitoring Power (kg)
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3CMP 3-Phase Control and Monitoring Power (kg)

TRUEM Transformer/Rectifier Unit Electronics Mass

TRUE Transformer/Rectifier Unit Efficiency (%)

TRUSE Transformer/Rectifier Unit Stage Efficiency

CV Component Volume (m3)

CH Component Height (m)

CW Component Width (m)

CL Component Length (m)

FHEM Finned Heat Exchanger Enclosure Mass (kg)

CPEM Coldplate Based Enclosure Mass (kg)

RA Radiator Area (m2)

RAM Radiator Mass (kg)

TD Coldplate to Radiator Temperature Delta ('C)

T Coldplate Temperature (°C)

(kg)

(%)

The EXCEL model "XFMRRECT.XLS"
ured to accept frequency inputs from
contained in this model.

is for a transformer/rectifier unit config-
60 Hz to 2 kHz. The following equations are

Transformer/Rectifier Unit Component Equations

Single-

Single-Phase:

PI:Po/TRUE

and 3-Phase: TRUSE=FE*TE*RE*FE

TRU E=Po/((Po/FE/RE/T E+ ICMP/I000 )/FE)

3-Phase: TRUE:Po/((Po/FE/RE/TE+3CMP/IOOO)/FE)

Single-Phase: TRUEM=IIFM+]TM+IRM+IOFM+ICCM+ICMM

3-Phase: TRUEM=31FM+3TM+3RM+3OFM+3CCM+3CMM

Transformer/Rectifier Unit Input Ac Filter Equations

IIFM=O.OI*((I-O.995)/(]-FE))*(AM/RM)*(po/FE/RE/TE+1CMP/IO00).

(Po/RM/FE/RE/TE+ICMP/RM/IOOO)°'°3*(TF/20)°.6
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31FM=O, 0105" ( ( 1-0.995 )[ ( I- FE) )* (AM/RM) * ( Po/FE/RE/TE+3CMP[ 1000) *

( Po/RM/ FE/RE/TE +3CMP/RM/ I O00).o.o3, (TF/20)°'6

Transformer/Rectifier Unit Transformer Equations

ITM:I. 15"( (EXP(O. 003/(I-TE)))/I. 35)* (AM/RM)* (Po/F E/RE)* ((Po/RM/FE/RE) "°'°8

• EXP(VI*FE/2OOOOO)*EXP (Vo/O. 9[FE/RE/200000)*OF°'47+(OF[300) I"4)

3TM=2.5*((EXP(O. 003/(I-TE)))/I .35)*(AM/RM)*(Po/FE/RE)*((Po/RM/FE/RE)'°'2s

• EXP(V _* FE/200000 ) *EXP (Vo/i. 35[FE/RE/200000 ) *0F°'47+ (OF/300 )1.4 )

Transformer/Rectifier Unit Rectifier Equations

IRM=O. I* ( (EXP (0.005/(I -RE) ) )[ 1.4)* (AM/RM)* ( Po/F E)* (Vo/F E/(Vo/F E- 2) )6

•EXP (Vo/FE/80000)

3RM=O.II*((EXP(O.OOB/(I-RE)))/1.4)*(AM/RM)*(Po/FE)*(Vo/FE/(Vo/FE-2))6

*EXP(Vo/FE/80000)

Transformer/Rectifier Unit Output Dc Filter Equations

10FM=4700" (I/(RF/O. 01 )0.5),((I-0.995 )/(I-FE) )* (AM/RM)*Po* (Vo2+0" 000001 )*(20/TF)

30FM=4700-(i/(RF/O. 01 )°'s)*((I-0.995)/(I-FE))* (AM/RM)*Po* (Vo'2+O.000001)* (6"7/TF)

Transformer/Rectifier Unit Conductor and Connector Equations

ICCM= (AM/RM) * CO.028* ((Po*i000 )/vo)+0.028* (((Po*i000)/TRUE )/V x))

3CCM= (AM/RM)* ((3°s/2 )*0.028* ((Po*1000 )/Vo)+(3°s/2)*0. 028* (((Po*I000)/TRUE)/Vl ))

Transformer/Rectifier Unit Control and Monitoring Equations

ICMM=AM* (i.4+0.6* (Po/RM)o.3+0 "167" (Po/RM )o.3)

3CMM=AM* (2+I. 66* (Po/RM)°3+0 •5* (Po/RM )°'3)

ICMP=AM*44.5* (Po/RM )o.i

3CMM:AM*63.5* (Po/RM)°"

The normally used coefficients "0.9" and "0.25", and "2.5" and "0.75" in the con-
trol and monitoring mass equations were reduced to "0.6" and "0.167", and "1.66"

and "0.5" respectively. This was done because a transformer/rectifier unit has

fewer stages and is less complex than components such as a dc/dc converter or

frequency converter; consequently, the number of sensors and their corresponding

wiring was judged to be about two-thirds of the amounts in these components.

The normally used coefficients "55.6" and "79.4" in the control and monitoring

power demand equations were reduced to "44.5" and "63.5" respectively. This was
done because a transformer/rectifier unit has fewer sensors than components such
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as a dc/dc converter or frequency converter; consequently, the control and moni-
toring power demand was judged to be about 80% of the demand in these components.

Transformer/Rectifier Unit Volume and Dimension Equations

CV=TRUEM/(O.342*IO00)

CH:O. 7*CV °'3333

CW:]. 1*CV 0"3333

CL:I .3*CV °'3333

Transformer/Rectifier Unit Enclosure Equations

FHEM=44.26*CV°'_+27*(CL*CW)

CPEM=44.26*CV°'6666+IO.25*(CL*CW)

Transformer/Rectifier Unit Radiator Equations

RA:(].]212E+]O*(Po/TRUE-Po)/((T+273-TD)_-2504)

RAM=4.]59*RA

3.2.5 Rectifier Unit Model

The rectifier unit model

stage and including ancillary hardware.
is shown in Figure 58.

is created by adding filtering after the rectifier
A diagram of the rectifier unit model

AC Input-

........................ i

Input ]__Filter

ControJ & Monitoring I.........................Subsystem

Rectifier --{ OutputFilter

Figure 58 Rectifier Unit Diogrom

DC Output

Application Notes: Rectifier units are used to convert an incoming ac waveform

to a dc output. This rectifier unit model is suitable for applications following
an alternator or feeding a load or distribution network. The main difference in

the two applications will probably be the output dc filter design. The charac-

teristics of a particular application will determine its filter specifications;

however, a ripple factor of I% is suggested for rectifier units that supply power
to sensitive user loads, and 5% is recommended for units that follow an alterna-

tor or feed il_dLstrial Rover devices such as heaters. This model is only suit-

able to accept low frequency inputs, 2 kHz or less, with a low harmonic content.
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It is not designed to accept a high frequency input. A dc load receiver with a
resonant tank circuit is normally preferred for high frequency inputs.

The input filter equation coefficient was reduced to a value that is one-
tenth of the value contained in the ac filter equations listed in section 3.1.5.
This will yield a filter massthat is more indicative of this application. The
ac filter design described in section 3.1.5 is a series harmonic trap and its
main purpose is to prevent the resonant circuit in the chopper from amplifying
external harmonics. A rectifier does not contain a resonant circuit, so it is
not capable of amplifying harmonics. Alternators can also tolerate fairly high
levels of harmonic distortion so it is not necessary to completely suppress these
harmonics anyway. To improve these filter massestimates, system power quality
requirements must be defined and low frequency filter designs suitable for this
type of application must be generated. The majority of the ac filter designs
noted to date are intended for high frequency uses.

Spreadsheet Printout: A printout of the rectifier unit model is shown in Figure
59. Subsequent sections describe its characteristics and operation.

Model Input Parameter Ranqes_ The results generated by this spreadsheet are only
valid for a certain range of input parameters. Inaccurate mass estimates may re-

sult if input parameters outside of the ranges defined in Table 30 are used and
it is not recommended. Table 30 also identifies the values that should yield the

best results, and lists sources that should be consulted for certain input param-

eters. The user is responsible for selecting input parameters that do not con-

flict and are reasonable for the application and operating conditions.

144



X

0

0

0

N
0

II

145

oleel

,-4



X

rj

rj om

146



X

r_

m
m

¢1

O

m

U
i-I
II
r.)

I:I
i,,4

oo co

c_,I ¢'_ t'%1c_1 _,,D Lc)

A

4a4a:
4a .la_

m

mm #:':":- o o
o o ,::!_1 oj _/

_u u olo!

oo _
m m _'_

o

_- _ ____,_

_,, ___ __ o ___ __
o .

,I_I ,1:I

e4 _

W • _ 0 ,-40
,_ I_ _,-4
I_1_ _ U 4a U

-,-_ C_ 0 _
_ m_l E_I_I

om

]47



Table 30

Rectifier Unit Model Input Parameter Ranges

Rectifier Unit

Input Parameter

Output Power Level

Output Voltage Level

Recommended

Input Ranqe

0.5 to 250 kWe

20 to 10,000 Vdc

(Refer to Table 3 for

voltages below 120 Vdc)

Number of Phases Ior3

Ripple Factor Percentage

Available Modules

0.5 to 8%

Equal to or Greater
than Required Modules

Required Modules

Transmission Frequency

AC and DC Filter Efficiencies

No Limit

60 Hz to 2 kHz

Range: 99.0 to 99.9%
99.5% is Recommended

Rectifier Efficiency Normal Range: 97.5 to 99.5%
98.5% is Recommended

Coldplate Temperature (_) 10 to 100 ° C

40 ° C Suggested for FH Enclosure

60 ° C Suggested for CP Enclosure

Coldplate to Radiator Temperature Delta 0 to 20" C
16.7 ° C is Recommended

Enclosure Type (FH or CP) Finned Heat Exchanger (FH)

Coldplate (CP)

1. Because the Cotdptate Enclosure has a lower thermal resistance than the Fi_ Heat Exchanger Enclosure,

the colc_olate tenI>erature can be set 20" C higher when the Cotdplate Enclosure is setectc'<L

148



Model Equation Listinq:
unit model equations.

Table 31 defines the variables used in the rectifier

Po

PI

Vo

AM

RM

TF

RF

IIFM

31FM

IRM

3RM

IOFM

30FM

FE

RE

ICCM

3CCM

ICMM

3CMM

ICMP

3CMP

RUEM

RUE

RUSE

Table 31

Rectifier Unit Model Variable Definitions

Output Power Level (kWe)

Input Power Level (kWe)

Voltage Output (Vdc)

Available Modules

Required Modules

Transmission Frequency (kHz)

Ripple Factor (%)

Single-Phase Input Ac Filter Mass (kg)

3-Phase Input Ac Filter Mass (kg)

Single-Phase Rectifier Mass (kg)

3-Phase Rectifier Mass (kg)

Single-Phase Output Dc Filter Mass (kg)

3-Phase Output Dc Filter Mass (kg)

Ac and Dc Filter Efficiencies (%)

Rectifier Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control and Monitoring Mass (kg)

Single-Phase Control and Monitoring Power (kg)

3-Phase Control and Monitoring Power (kg)

Rectifier Unit Electronics Mass (kg)

Rectifier Unit Efficiency (%)

Rectifier Unit Stage Efficiency (%)
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CV

CH

CW

CL

FHEM

CPEM

RA

RAM

TD

T

Component Volume (m3)

Component Height (m)

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure

Coldplate Based Enclosure Mass

Radiator Area (m2)

Radiator Mass (kg)

Coldplate

Coldplate

Mass (kg)

(kg)

to Radiator Temperature Delta ('C)

Temperature (°C)

The EXCEL model

frequency inputs
equations.

"ACDCRECT.XLS" is for a rectifier unit capable of accepting
ranging from 60 Hz to 2 kHz. The model utilizes the following

Rectifier Unit Component Equations

P_:Po/RUE

3-Phase: RUSE:FE*TE*RE*FE

RUE= Po/((Po/FE/RE/TE+ 1CMP/IO00)/FE)

3-Phase: RUE=PJ ((Po/FE/RE/TE+3CMP/IO00)/FE)

Single-Phase: RUEM=IIFM+ITM+IRM+IOFM+ICCM+ICMM

3-Phase: RUEM=31FM+3TM+3RM+3OFM+3CCM+3CMM

Rectifier Unit Input Ac Filter Equations

Single- and

Single-Phase:

IIFM:O.OI*((I-O.995)/(l-FE))*(AM/RM)*(Po/FE/RE+ICMP/IO00)*

(Po/RM/FE/RE+ICMP/RM/IOOO)°'°3*(TF/20) °'6

31FM=O.OIO5*((I-O.995)/(I-FE))*(AM/RM)*(Po/FE/RE+3CMP/IO00)*

(Po/RM/FE/RE+3CMP/RM/IOOO)°'°3*(TF/20) °'6

Rectifier Unit Rectifier Equations

1RM=O.I*((EXP(O.OO5/(I-RE)))/I.4)*(AM/RM)*(Po/FE)*(Vo/FE/(Vo/FE-2)) 6

*EXP(Vo/FE/80000)
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3RM:O.11*((EXP(O.OO5/(]-RE)))/I.4)*(AM/RM)*(Po/FE)*(Vo/FE/(Vo/FE-2)) 6
*EXP(Vo/FE/80000)

Rectifier Unit Output Dc Filter Equations

__FM=47__*(1/(RF/___1)°_s)*((1___995)/(1_FE))*(AM/RM)*P_*(V__2+________)*(2_/TF_

3_FM=47__*(1/(RF/____)°___*((____9__)/(1_FE))*(AM/RM)*P_*(V__2+________)*(6_7/TF_

Rectifier Unit Conductor and Connector Equations

ICCM=O. 056* (AM/RM) *((Po*1OOO)/Vo)

3CCM=O. 056* (AM/RM )*(30.s/2)* ((Po*IO00)/Vo)

Rectifier Unit Control and Monitoring Equations

ICMM=AM*(I.4+O.3*(Po/RM)°'3+O.O83*(Po/RM)°'3)

3CMM=AM*(2+O.83*(Po/RM)°'3+O.25*(Po/RM) °'3)

ICMP=AM*33.4*(Po/RM) °'I

3CMM=AM*47.6*(Po/RM) °'I

The normally used coefficients "0.9" and "0.25", and "2.5" and "0.75" in the con-

trol and monitoring mass equations were reduced to "0.3" and "0.083", and "0.83"

and "0.25" respectively. This was done because a rectifier unit has fewer stages

and is less complex than components such as a dc/dc converter or frequency con-

verter; consequently, the number of sensors and their corresponding wiring was
judged to be about one-third of the amounts in these components.

The normally used coefficients "55.6" and "79.4" in the control and monitoring

power demand equations were reduced to "33.4" and "47.6" respectively. This was

done because a rectifier unit has fewer sensors than components such as a dc/dc

converter or frequency converter; consequently, the control and monitoring power

demand was judged to be about 60% of the demand in these components.

Rectifier Unit Volume and Dimension Equations

CV=RUEM/(0.342*IO00)

CH=O.7,CV °-3333

CW=I. ]*CV 0"3333

CL=I .3*CV 0"3333

Rectifier Unit Enclosure Equations

FHEM=44.26"CV°'6666+27 *(CL*CW)

CPEM=44.26"CV°'6666+10.25" (CL*CW)
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Rectifier Unit Radiator Equations

RA=(].I212E+10*(Po/RUE-Po)/((T+273-TD)4-2504)

RAM=4.159*RA

3.2.6 Transformer Unit Model

The transformer unit model is the easiest to create. It simply incorpor-
ates the standard transformer stage with its associated ancillary hardware. A
diagram of the transformer unit model is shownin Figure 60.

Variable

Voltage

AC Input

Control & Monitoring I
Subsystem )

Transformer }

Variable

Voltage.

AC Output

Figure 60 Transformer Unit Diagram

Application Notes: The transformer unit is used to change the input ac voltage
to an different level. The transformer stage also isolates the input and output,

which reduces the level of transmitted interference. The transformer unit can

be used anywhere in the power system where a change in voltage is required. In

applications near a load the high transmission voltage is normally stepped down
to the level desired by the load or selected for distribution. It can also be

used after an alternator power source, but normally an alternator is capable of

providing the desired voltage directly. Since the transformer unit does not use

filtering, there are no filter considerations. This model is designed to accept

any frequency input from 60 Hz to 60 kHz, but the waveform should exhibit a fair-

ly low harmonic content consistent with external sinusoidal power transmission.

Spreadsheet Printout: A printout of the transformer unit model is shown in

Figure 61. Its format and operation is described in later sections.

Model Input Parameter Ranqes: The results generated by this spreadsheet are only
valid for a certain range of input parameters. Inaccurate mass estimates may re-

sult if input parameters outside of the ranges defined in Table 32 are used and
it is not recommended. Table 32 also identifies the values that should yield the

best results, and lists sources that should be consulted for certain input param-
eters. The user is responsible for selecting input parameters that do not con-

flict and are reasonable for the application and operating conditions.
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Table 32

Transformer Unit Model Input Parameter Ranges

Transformer Unit

Input Parameter

Output Power Level

Input Voltage Level CI)

Output Voltage Level (I)

Number of Phases

Recommended

Input Range

0.5 to 250 kWe

20 to 10,000 Vrms

20 to 10,000 Vrms

I or 3

Available Modules Equal to or Greater

than Required Modules

Required Modules

Transformer Frequency

Transformer Efficiency

No Limit

60 Hz to 60 kHz

Range: 97.5 to 99.5%
99% is Recommended

Coldplate Temperature (2)
40 ° C

60 o C

10 to 100 ° C

Suggested for FH Enclosure
Suggested for CP Enclosure

Coldplate to Radiator Temperature Delta 0 to 20° C

16.7 ° C is Recommended

Enclosure Type (FH or CP) Finned Heat Exchanger (FH)

Coldplate (CP)

I.

2.

The voltage step ratio should not exceed the limits defined in Table 6. To obtain the voltage step ratio,

divide the higher, input or output voltage by the other, input or output voltage.

Because the Coldplate Enclosure has a Lower thermal resistance than the Firv-_d Heat Exchanger Enclosure,

the cotdplate ten_erature can be set 20 = C higher when the Coldptate Enclosure is selected.
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Model Equation Listing: Table 33 defines the variables utilized in the trans-
former unit model equations.

PO

Pl

VI

Vo

AM

RM

TF

ITM

3TM

TE

ICCM

3CCM

ICMM

3CMM

ICMP

3CMP

TUEM

TUE

TUSE

CV

CH

CW

CL

FHEM

Table 33

Transformer Unit Model Variable Definitions

Output Power Level (kWe)

Input Power Level (kWe)

Voltage Input (Vdc)

Voltage Output (Vdc)

Available Modules

Required Modules

Transformer Frequency (kHz)

Single-Phase Transformer Mass (kg)

3-Phase Transformer Mass (kg)

Transformer Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control and Monitoring Mass (kg)

Single-Phase Control and Monitoring Power (kg)

3-Phase Control and Monitoring Power (kg)

Transformer Unit Electronics Mass (kg)

Transformer Unit Efficiency (%)

Transformer Unit Stage Efficiency (%)

Component Volume (m3)

Component Height (m)

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)
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CPEM Coldplate Based Enclosure Mass (kg)

RA Radiator Area (m2)

RAM Radiator Mass (kg)

TD Coldplate to Radiator Temperature Delta ('C)

T Coldplate Temperature (°C)

The

equations

EXCEL model "ACACXFMR.XLS" is for a transformer unit and the following

are contained in this model.

Transformer Unit Component Equations

Px:Po/TUE

Single- and 3-Phase: TUSE=TE

Single-Phase: TUE=Po/(Po/TE+ICMP/IO00)

3-Phase: TUE=Po/(Po/TE+3CMP/IO00)

Single-Phase: TUEM=ITM+ICCM+ICMM

3-Phase: TUEM=3TM+3CCM+3CMM

Transformer Unit Transformer Equations

ITM=1.15*((EXP(0.003/(I-TE)))/1.35)*(AM/RM)*Po*((Po/RM) "°'°8

*EXP(V_/200000)*EXP(Vo/200000)*TF°_7+(TF/300) 1"4)

3TM=2.5*( (EXP (0.003/(I -TE) ))/1.35)* (AM/RM)*Po*( (Po/RM)-o.2s

*EXP(V_/200000)*EXP(VJ200000)*TF°47+(TF/300) _'_)

Transformer Unit Conductor and Connector Equations

ICCM=(AM/RM)*(0.028*((Po*I000)/Vo)+0.028*(((Po*I000)/TUE)/V_))

3cCM=(AM/RM)*((3_s/2)*_28*((P_*1_)/V_)+(3_s/2)*_28*(((P_*_)/TUE)/Vi))

Transformer Unit Control and Monitoring Equations

ICMM=AM*(I.4+O.3*(Po/RM)°3+0.083*(Po/RM) °'3)

3CMM=AM*(2+O.83*(Po/RM)°3+0.25*(Po/RM) °'3)

ICMP=AM*33.4*(Po/RM) °I

3CMM=AM*47.6*(Po/RM) °'I
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The normally used coefficients "0.9" and "0.25", and "2.5" and "0.75" in the con-
trol and monitoring mass equations were reduced to "0.3" and "0.083", and "0.83"
and "0.25" respectively. This was done because a transformer unit has fewer
stages and is less complex than components such as a dc/dc converter or frequency
converter; consequently, the number of sensors and their corresponding wiring was
judged to be about one-third of the amounts in these components.

The normally used coefficients "55.6" and "79.4" in the control and monitoring
power demand equations were reduced to "33.4" and "47.6" respectively. This was
done because a transformer unit has fewer sensors than components such as a dc/dc
converter or frequency converter; consequently, the control and monitoring power
demand was judged to be about 60% of the demand in these components.

Transformer Unit Volume and Dimension Equations

CV:TUEM/(O.342*IO00)

CH=O.7,CV o.3333

CW:I.I,CV °.3333

CL=I .3*CV 0"3333

Transformer Unit Enclosure Equations

FHEM:44.26*CV°'666%27" (CL*CW)

CPEM=44.26"CV °'6666+iO. 25* (CL*CW)

Transformer Unit Radiator Equations

RA: (1.]212E+I0" (Po/TUE-Po)/( (T+273 -TD)4-250 _)

RAM:4.159*RA

3.2.7 DC RBI Switchgear Model

The dc RBI switchgear model integrates several dc RBIs into a single unit.
The RBIs are interconnected by a main bus. A bus capacitor is included to stab-
ilize the output power during a switching operation. The model is completed with
the addition of control and monitoring, an enclosure, and a radiator.

Application Notes: The dc switchgear unit interconnects the system power sources
and load distribution networks. The RBIs contained in the switchgear unit allow

the sources and load distribution networks to be disconnected from the power sys-

tem during maintenance periods, and provide fault protection for these components

when they are operating. In a large power system, one dc switchgear unit is typ-

ically located near the power sources, while another unit is situated by the load

distribution networks. The unit close to the power sources makes it possible to

bring individual sources on line separately, and remove a source from the system

if it is malfunctioning or requires maintenance. Switchge_r u_its located near

the loads typically feed local power distribution networks. The dc RBI switch-

gear model is intended to very flexible. The designer is able to specify one to

eight input RBIs, and one to eight RBI power feeds.
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Spreadsheet Printout: A printout of the dc RBI Switchgear model is shown in Fig-

ure 62. Its format and operation are explained in the following sections.

Model Input Parameter Ranqes: The results generated by this spreadsheet are only

valid for a certain range of input parameters. Inaccurate mass estimates may re-

sult if input parameters outside of the ranges defined in Table 34 are used and

it is not recommended. Table 34 also identifies the values that should yield the

best results, and lists sources that should be consulted for some input param-

eters. The user is responsible for selecting input parameters that do not con-

flict and are reasonable for the application and operating conditions.

Table 34

DC RBI Switchgear Unit Model Input Parameter Ranges

DC RBI Switchgear Unit

Input Parameter

Recommended

Input Range

Number of Input RBI Units i to 8

Number of Output RBI Units i to 8

RBI Unit Output Power Level 5 to 250 kWe

RBI Unit Output Voltage Level i00 to I0,000 Vdc

RBI Efficiency Range: 99.8 to 99.9%
99.85% is Recommended

Capacitor Energy Storage Factor Range: I to 2 Joules/kWe

1.8 Joules/kWe is Recommended

Enclosure Type (FH or CP) Finned Heat Exchanger (FH)

Coldplate (CP)

Coldplate Temperature (I) 10 to 100" C

40 ° C Suggested for FH Enclosure

60 ° C Suggested for CP Enclosure

Coldplate to Radiator Temperature Delta 0 to 20 ° C
16.7 ° C is Recommended

Available Switchgear Modules Equal to or Greater

than Required Modules

Required Switchgear Modules No Limit

1. Because the Coldptate Enclosure has a tower thermal resistance than the Fir_'_ecl Heat Exchanger Enclosure,

the coldpLate ten_oerature can be set 20 ° C higher when the Coldplate Enclosure is selected.

Model Equation Listir_. Table 35 ,iefines the variables utilized in the dc RBI

switchgear unit model equations.
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RBPo

SWRPI

SWRP8

RBVo

AM

RM

RBUM

IRBM

ORBM

RBE

CESF

CBS

CBM

CCM

CMM

CMP

SWREM

SWRE

RBSE

CV

CH

Table 35

DC RBI Switchgear Model Variable Definitions

RBI Output Power Level (kWe)

The variable RBP o will be prefaced with the letter
I or 0 and a number to identify a specific RBI Unit.

For example 12RBPo is input RBI unit #2.

Switchgear Input Power Level (kWe)

Switchgear Bus Power Level (kWe)

RBI Voltage Output (Vdc)

Available Modules

Required Modules

RBI Unit Mass (kg)

Input RBI Mass (kg)
The variable RBM will be prefaced with the letter I

or 0 and a number to identify a specific RBI Unit.

For example 12RBM is input RBI unit #2.

Output RBI Mass (kg)
The variable RBM will be prefaced with the letter I
or 0 and a number to identify a specific RBI Unit.

For example 04RBM is output RBI unit #4.

RBI Efficiency (%)

Capacitor Energy Storage Factor (Joules/kWe)

Capacitor Bank Size (microfarads)

Capacitor Bank Mass (kg)

Conductor and Connector Mass (kg)

Control and Monitoring Mass (kg)

Control and Monitoring Power (kg)

Switchgear Electronics Mass (kg)

Switchgear Efficiency (%)

Combined RBI and Bus Section Efficiency (%)

Component Volume (m3)

Component Height (m)
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CW

CL

FHEM

CPEM

RA

RAM

TD

T

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)

Coldplate Based Enclosure Mass (kg)

Radiator Area (m2)

Radiator Mass (kg)

Coldplate to Radiator Temperature Delta ('C)

Coldplate Temperature (°C)

The EXCEL model "DCRBI.XLS" estimates the mass of a dc RBI switchgear unit.

The following equations are contained in this model.

Dc RBI Switchgear Unit Component Equations

SWRPB:IIRBPo+I2RBPo+I3RBPo+I4RBPo+I5RBPo+I6RBPo+I7RBPo+I8RBPo

SWRPI=(IIRBPo+I2RBPo)/RBE

RBSE=RBE*O.999*RBE

The efficiency of the switchgear bus was assumed to be 99.9%.

SWRE=((SWRP_*RBE-CMP/IOOO)*O.ggg*RBE)/SWRP_

SWREM:IRBM+ORBM+CBM+CCM+CMM

Dc RBI Switchgear Unit RBI Equations

RBUM=O. 12* ((EXP (0.0008/( i-RBE )))/I.7)*(AM/RM) *RBPo* (RBPo/RM) °" is,(RBVo/200 )o.13

This equation is repeated for each of the RBI units at its output power level.

IRBM=IIRBM+I2RBM+I3RBM+I4RBM+I5RBM+I6RBM+I7RBM+I8RBM

ORBM=OIRBM+O2RBM+O3RBM+O4RBM+O5RBM+O6RBM+O7RBM+O8RBM

Dc RBI Switchgear Unit Capacitor Equations

CBS=(AM/RM)*(2*IOOOOOO*((SWRPE*CESF)/RBVo2))

To calculate an appropriate size for the capacitor bank that stabilizes the dc

switchgear bus, an energy storage value based on the switchgear bus's power level
was derived from the present SSF dc switching unit (DCSU). A figure of "1.8"

yields a capacitor bank size of 4050 _F for a 45 kWe switchgear bus power level.

This is roughly equivalent to the capacitor bank size in the present SSF DCSU.
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Utilizing the relationship:

E=I/2*C*V2

where: E is the energy stored in the capacitor expres-
sed in joules,
C is the capacitor value in farads, and
V is the voltage across the capacitor in volts;

the capacitor size can be calculated from the switchgear bus power level and a
user defined capacitor energy storage factor. Note that an increase in the
switchgear bus voltage will exponentially reduce the capacitor size, since its
stored energy is proportional to the voltage squared.

CBM=O.OO55*CBS

Dc RBI Switchgear Unit Conductor and Connector Equation

CCM:(AM/RM)*(O.O56*(SWRPx*IOOO)*SWRE/RBVo)

Dc RBI Switchgear Unit Control and Monitoring Equations

CMM=AM*(].4+O.9*(SWRPa/RM)°3+O.25*(SWRPB/RM)°'3)

CMP=AM*55.6*(Po/RM)°-I

Dc RBI Switchgear Unit Volumeand Dimension Equations

CV=SWREM/(0.342*1000)

CH=O.7*CV 0"3333

CW:I. I*CV°'3333

CL=I. 3*CV°'3333

Dc RBI Switchgear Unit Enclosure Equations

FHEM=44.26*CV°.6666+27*(CL*CW)

CPEM=44.26*CV°.6666+IO.25*(CL*CW)

Dc RBI Switchgear Unit Radiator Equations

RA=(I.1212E+IO*(SWRP_-SWRE*SWRP_)/((T+273-TD)_-2504)

RAM=4.159*RA
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3.2.8 AC RBI Switchgear Model

The ac RBI switchgear model integrates several ac RBIs into a single unit

by interconnecting them with a main bus. The model is completed by adding con-
trol and monitoring, an enclosure, and a radiator.

Application Notes: The ac switchgear unit interconnects the system power sources

and load distribution networks. The RBIs contained in the switchgear unit allow

the sources and load distribution networks to be disconnected from the power sys-

tem during maintenance periods, and provide fault protection for these components

during operation. In a large power system, one ac switchgear unit will probably
be close to the power sources, while another unit is situated near the load dis-

tribution networks. The unit near the power sources makes it possible to bring
individual sources on line separately, and remove a source from the system if it
is malfunctioning or requires maintenance. Switchgear units located close to the

loads typically feed local power distribution networks. The ac RBI switchgear

model is designed to be quite flexible and it allows the designer to specify one
to eight input RBIs, and one to eight RBI power feeds.

Spreadsheet Printout: A printout of the ac RBI Switchgear model is shown in Fig-
ure 63. Its format and operation are explained in the following sections.

Model Input Parameter Ranqes: The results generated by this spreadsheet are only

valid for a certain range of input parameters. Inaccurate mass estimates may re-
sult if input parameters outside of the ranges defined in Table 36 are used and

it is not recommended. Table 36 also identifies the values that should yield the

best results, and lists sources that should be consulted for some input param-
eters. The user is responsible for selecting input parameters that do not con-

flict and are reasonable for the application and operating conditions.
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Table 36

AC RBI Switchgear Unit Model Input Parameter Ranges

AC RBI Switchgear Unit Recommended

Input Parameter Input Ranqe

Number of Input RBI Units 1 to 8

Number of Output RBI Units ]to8

RB] Unit Output Power Level 5 to 250 kWe

RBI Unit Output Voltage Level 100 to 10,000 Vrms

RBI Efficiency Range: 99.8 to 99.9%

99.85% is Recommended

Number of Phases ]or3

Enclosure Type (FH or CP)

Coldplate Temperature (I)

Finned Heat Exchanger (FH)

Coldplate (CP)

10 to 100" C

40 ° C Suggested for FH Enclosure

60 ° C Suggested for CP Enclosure

Coldplate to Radiator Temperature Delta 0 to 20 ° C
16.7" C is Recommended

Available Switchgear Modules Equal to or Greater

than Required Modules

Required Switchgear Modules No Limit

1. Because the Cotdplate Enclosure has a tower thermal resistance than the Finned Heat Exchanger Enclosure,
the cotdptate temperature can be set 20" C higher when the Cotdptate Enclosure is setectecl.

Model Equation Listing: Table 37 defines the variables utilized in the ac RBI
switchgear unit model equations.

RBPo

SWRPI

Table 37

AC RBI Switchgear Model Variable Definitions

RBI Output Power Level (kWe)

The variable RBPo will be prefaced with the letter

I or 0 and a number to identify a specific RBI Unit.

For example 12RBPo is input RBI unit #2.

Switchgear Input Power Level (kWe)
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SWRP B

RBVo

AM

RM

1RBUM

3RBUM

IIRBM

3IRBM

IORBM

30RBM

RBE

ICCM

3CCM

ICMM

3CMM

lCMP

3CMP

SWREM

SWRE

RBSE

CV

CH

CW

CL

FHEM

Switchgear Bus Power Level (kWe)

RBI Voltage Output (Vdc)

Available Modules

Required Modules

Single-Phase RBI Unit Mass (kg)

3-Phase RBI Unit Mass (kg)

Single-Phase Input RBI Mass (kg)
The variable RBM will be prefaced with the letter I

or 0 and a number to identify a specific RBI Unit.

For example II2RBM is single-phase input RBI #2.
This is also done with the 3-Phase input RBIs, and

the single- and 3-phase output RBIs.

3-Phase Input RBI Mass (kg)

Single-Phase Output RBI Mass (kg)

3-Phase Output RBI Mass (kg)

RBI Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control and Monitoring Mass (kg)

Single-Phase Control and Monitoring Power (kg)

3-Phase Control and Monitoring Power (kg)

Switchgear Electronics Mass (kg)

Switchgear Efficiency (%)

Combined RBI and Bus Section Efficiency (%)

Component Volume (m3)

Component Height (m)

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)
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CPEM

RA

RAM

TD

T

Coldplate Based Enclosure Mass (kg)

Radiator Area (m2)

Radiator Mass (kg)

Coldplate to Radiator Temperature Delta (°C)

Coldplate Temperature (°C)

The EXCEL model "ACRBI.XLS" estimates the mass of an ac RBI switchgear

unit. The following equations are contained in this model.

Ac RBI Switchgear Unit Component Equations

SWRPB=IIRBPo+I2RBPo+I3RBPo+I4RBPo+I5RBPo+I6RBPo+ITRBPo+I8RBP o

The number of input RBI power feeds is defined by the user. One to eight input
RBI units can be selected.

SWRPI=(I]RBPo+I2RBPo)/RBE

RBSE=RBE*O.999*RBE

The efficiency of the switchgear bus was assumed to be 99.9%.

Single-Phase: SWRE=((SWRP_*RBE-ICMP/]OOO)*O.999*RBE)/SWRP I

3-Phase: SWRE=((SWRP_*RBE-3CMP/IOOO)*O.999*RBE)/SWRP_

Single-Phase: SWREM=IIRBM+IORBM+ICBM+ICCM+]CMM

3-Phase: SWREM=31RBM+3ORBM+3CBM+3CCM+3CMM

Ac RBI Switchgear Unit RBI Equations

IRBUM=O. 1"((EXP (0.0008/( i-RBE )))/1.7 )*(AM/RM) *RBPo* (RBPo/RM)-o.13,(RBVo/200) o.os

3RBUM=O. 135* ((EXP (0.0008/( I-RBE )))/I.7)*(AM/RM) *RBPo*(RBPo/RM )-o.15,(RBVo/200) o.os

The proper equation, either single-phase or 3-phase, is automatically selected
by the model based on the number of phases input by the user. The individual RBI

mass is then calculated for each of the RBI units at its output power level.

Single-Phase: ]IRBM=IIIRBM+II2RBM+II3RBM+II4RBM+II5RBM+II6RBM+IIIRBM+II8RBM

3-Phase: 31RBM=31]RBM+312RBM+313RBM+314RBM+315RBM+316RBM+317RBM+318RBM

Single-Phase: IORBM=IOIRBM+]O2RBM+IO3RBM+IO4RBM+]O5RBM+IO6RBM+IOIRBM+IO8RBM

3-Phase: ?ORBM=3OIRBM+302RBM+303RBM+304RBM+305RBM+306RBM+307RBM+308RBM
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The number of individual RBI unit masses is determined by the user. One to eight
input and output RBI units can be defined.

Ac RBI Switchgear Unit Capacitor Equation

An equation was not included in the ac switchgear unit model to calculate a mass

for a capacitor bank because capacitive storage is not necessary to provide bus

stability. However, later design developments may indicate a capacitor bank is

required for power factor correction, especially if the transmission lines are
highly inductive. If switchgear capacitors are incorporated into future designs,
the model can be revised.

Ac RBI Switchgear Unit Conductor and Connector Equations

ICCM=(AM/RM)*(O.O56*(SWRPI*IOOO)*SWRE/RBV o)

3CCM:(AM/RM)*((3°5/2)*O.O56*(SWRP_*IOOO)*SWRE/RBVo)

Ac RBI Switchgear Unit Control and Monitoring Equations

ICMM=AM*(I.4+o.g*(SWRPB/RM)°'3+O.25*(SWRPB/RM) °'3)

3CMM=AM*(2+2.5*(SWRPB/RM)°'3+O.75*(SWRPB/RM) °'3)

ICMP=AM*55.6*(Po/RM) °'_

3CMP=AM*79.4*(Po/RM) °'I

Ac RBI Switchgear Unit Volume and Dimension Equations

CV=SWREM/(O.342*IO00)

CH=O.7.CV °.3333

CW=I. I*CV°'3333

CL=I .3*CV°'3333

Ac RBI Switchgear Unit Enclosure Equations

FHEM=44.26*CV°'666%27*(CL*CW)

CPEM=44.26*CV°-6666+IO.25*(CL*CW)

Ac RBI Switchgear Unit Radiator Equations

RA=(I.1212E+IO*(SWRPI-SWRE*SWRP_)/((T+273-TD)4-2504)

RAM=4.159*RA
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3.2.9 DC RPC Distribution Panel Model

The dc RPC distribution panel model integrates several dc RPC modules into

a single unit. The RPC modules themselves consist of individual RPC units; each
RPC unit is a separate power feed. The RPC modules are connected to a main bus.

The RPC panel model is completed with the addition of control and monitoring, an
enclosure, and a radiator.

Application Notes: Dc RPC distribution panels are normally located in the secon-

dary distribution network. The RPC units contained in these panels provide power
to individual loads. The design of an RPC allows its power feed to be turned on

and off frequently. In this regard RPCs differ from RBIs. RBIs only interrupt
power delivery during off-normal times, such as a failure or maintenance. When

the RPC is supplying power, it is capable of monitoring load power demand and

providing fault protection. It is assumed the RPCs in future panels will be pro-

grammable so that the current interrupt value can be changed to correspond to
different load requirements.

The dc RPC distribution panel model design is intended to be very flexible.
The designer is able to specify from one to four RPC modules, and within a module

up to twenty RPC units. Because it was necessary to evenly allocate the mass of
the RPC module packaging and housing between individual RPC units, it is recom-

mended that the user define RPC unit configurations that will generate RPC module
power levels between 10 and 20 kWe. For example, ten I kWe RPCs results in ]0

kWe, four 3 kWe RPCs delivers 12 kWe, and one 16 kWe RPC provides 16 kWe.

This dc RPC distribution panel model is intended for external environments.

For applications in a habitat module, it is suggested that the coldplate enclo-

sure option be selected, and the user utilize the component mass figure that does
not include the mass of the radiator. It is assumed that a common radiator will

be available for the habitat. Naturally, the power losses occurring in the vari-

ous distribution panels must be factored into the habitat thermal management sys-
tem calculations.

Spreadsheet Printout: A printout of the dc RPC distribution panel model is shown

in Figure 64. This figure illustrates the capability of the model to provide a
mass estimate for four different RPC module configurations. Model format and

operation are explained in greater detail in the following sections.

Model Input Parameter Ranqes: The results generated by this spreadsheet are only

valid for a certain range of input parameters. Inaccurate mass estimates may re-
sult if input parameters outside of the ranges defined in Table 38 are used and

it is not recommended. Table 38 also identifies the values that should yield the

best results, and lists sources that should be consulted for some input param-
eters. The user is responsible for selecting input parameters that do not con-

flict and are reasonable for the application and operating conditions.
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Table 38

DC RPC Distribution Panel Model Input Parameter Ranges

DC RPC Distribution Panel Recommended

Input Parameter Input Ranqe

Number of RPC Modules I to 4

Distribution Panel Input Power Level (I) 10 to 100 kWe

RPC Unit Output Power Level I to 20 kWe

RPC Unit Output Voltage Level 20 to 500 Vdc

Number of RPC Units in RPC Module (2) I to 20

RPC Efficiency Range: 99.8 to 99.9%

99.85% is Recommended

Enclosure Type (FH or CP) Finned Heat Exchanger (FH)

Coldplate (CP)

Coldplate Temperature (3)

Coldplate to Radiator Temperature Delta

Available Distribution Panels

10 to

40 ° C Suggested
60 ° C Suggested

100" C
for FH Enclosure
for CP Enclosure

0 to 20 ° C

16.7 ° C is Recommended

Equal to or Greater

than Required Panels

Required Distribution Panels No Limit

I,

2.

3.

The distribution panel input power level must be defined by the user. The input power to a distribution

panel is often less than the connected output power load. The user may also specify an input power Level

larger than the connected load to allow for future growth.

The number of units depends on the power level of the individual RPC units. The defined RPC Module power

level should be between 10 and 20 kWe. Refer to Application Notes for more information.

Because the Coldptate Enclosure has a lower thermal resistance than the Finned Heat Exchanger Enclosure,
the cotdplate temperature can be set 20" C higher when the Cotdplate Enclosure is selected.

Model Equation Listing: Table 39 defines the variables utilized in the dc RPC

distribution panel model equations.

RPPo

Table 3g

DC RPC Distribution Panel Model Variable Definitions

RPC Unit Output Power Level (kWe)
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DPP_

RPVo

ADP

RDP

RPUM

NRPU

RPMM

RPE

CCM

CMM

CMP

DPEM

DPE

RBSE

CV

CH

CW

CL

FHEM

CPEM

RA

RAM

TD

T

Distribution Panel Input Power Level (kWe)

RPC Unit Voltage Output (Vdc)

Available Distribution Panels

Required Distribution Panels

RPC Unit Mass (kg)
The variable RPUM will be suffixed with a number to
identify an RPC Unit located in a specific module.
For example RPUM2 is an RPC Unit located in RPC
module #2, This nomenclature is also used for the
variables NRPU and RPMM.

Number of RPC Units in a Module

RPC Module Mass (kg)

RPC Efficiency (%)

Conductor and Connector Mass (kg)

Control and Monitoring Mass (kg)

Control and Monitoring Power (kg)

Distribution Panel Electronics Mass (kg)

Distribution Panel Efficiency (%)

Combined RPC and Bus Section Efficiency (%)

Component Volume (m3)

Component Height (m)

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)

Coldplate Based Enclosure Mass (kg)

Radiator Area (m2)

Radiator Mass (kg)

Coldplate to Radiator Temperature Delta (°C)

Coldplate Temperature (°C)
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The EXCELmodel "DCRPC.XLS"estimates the mass of a dc RPCdistribution
panel. The following equations are contained in this model.

DCRPCDistribution Panel ComponentEquations

RBSE=O.999*RPE

The efficiency of the distribution panel bus was assumedto be 99.9%.

DPE=((DPP_-CMP/IOOO)*O.999*RPE)/DPPx

DPEM=RPMM+CCM+CMM

DC RPCDistribution Panel RPCEquations

RPUM=O.36*((EXP(O.OOO3/(I-RPE)))/I.22)* (ADP/RDP)*RPPo*(RPPo/RDP)"°'IB*(RPVo/120)°'_

RPMMI=NRPUI*RPUMI

The RPCmodulemass is also calculated for RPCmodules #2, #3, and #4 depending
on the numberof user defined modules. The massof an RPCmodule is calculated
from the user defined RPCunit power level and the numberof RPCunits specified
in the module.

RPMM=RPMMI+RPMM2+RPMM3+RPMM4

DCRPCDistribution Panel Conductor and Connector Equation

CCM:(ADP/RDP)*(O.O56*(DPP_*IOOO)*DPE/RPVo)

DC RPC Distribution Panel Control and Monitoring Equations

CMM=ADP*(I.4+O.9*(DPPJRDP)°'3+O.25*(DPPI/RDP) °'3)

CMP=ADP*55.6*(Po/RDP) °'I

DC RPC Distribution Panel Volume and Dimension Equations

CV=DPEM/(0.342*IO00)

CH=O.7,CV °.3333

CW=]. I*CV0"3333

CL: I.3*CV 0"3333

DC RPC Distribution Panel Enclosure Equations

FHEM:44.26*CV°-6_%27*(CL*CW)

CPEM=44.26*CV°'666%]O.25*(CL*CW)
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DCRPCDistribution Panel Radiator Equations

RA=(I.1212E+IO*(DPPI-DPE*DPP_)/((T+273-TD)4-2504)

RAM=4.159*RA

3.2.10 AC RPC Distribution Panel Model

The ac RPC distribution panel model integrates several ac RPC modules into

a single unit. The RPC modules themselves consist of individual RPC units; each
RPC unit is a separate power feed. The RPC modules are connected to a main bus.

The RPC panel model is completed with the addition of control and monitoring, an

enclosure, and a radiator.

Application Notes: Ac RPC distribution panels are normally located in the secon-

dary distribution network. The RPC units contained in these panels provide power
to individual loads. The design of an RPC allows its power feed to be turned on

and off frequently. In this regard RPCs differ from RBIs. RBIs only interrupt

power delivery during off-normal times, such as a failure or maintenance. When

the RPC is supplying power, it is capable of monitoring load power demand and

providing fault protection. It is assumed the RPCs in future panels will be pro-

grammable so that the current interrupt value can be changed to correspond to
different load requirements.

The ac RPC distribution panel model design is intended to be very flexible.

The designer is able to specify from one to four RPC modules, and within a module

up to twenty RPC units. The designer can also specify the number of phases that

are incorporated into an RPC module. If all the RPC modules are single-phase,

a single-phase, two-wire bus is automatically selected; if only 3-phase RPCs are

specified, a 3-phase, 3-wire bus is selected by the model; if the panel contains

a mixture of single- and 3-phase RPCs, the model selects a 3-phase, 4-wire bus.

Because it was necessary to allocate the RPC module packaging and housing mass

evenly between individual RPC units, it is recommended that the user define RPC

unit configurations that will generate RPC module power levels between 10 and 20
kWe. For example, ten I kWe RPCs results in 10 kWe, four 3 kWe RPCs delivers 12

kWe, and one 16 kWe RPC provides 16 kWe.

This ac RPC distribution panel model is intended for external environments.

For applications in a habitat module, it is suggested that the coldplate enclo-

sure option be selected, and the user utilize the component mass figure that does
not include the mass of the radiator. It is assumed that a common radiator will

be available for the habitat. Naturally, the power losses occurring in the vari-

ous distribution panels must be factored into the habitat thermal management sys-
tem calculations.

Spreadsheet Printout: A printout of the ac RPC distribution panel model is shown

in Figure 65. This figure illustrates the capability of the model to provide a
mass estimate for four different RPC module configurations. Model format and

operation are explained in greater detail in the following sections.
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Model Input Parameter Ranqes: The results generated by this spreadsheet are only
valid for a certain range of input parameters. Inaccurate mass estimates may re-
sult if input parameters outside of the ranges defined in Table 40 are used and
it is not recommended. Table 40 also identifies the values that should yield the
best results, and lists sources that should be consulted for some input param-
eters. The user is responsible for selecting input parameters that do not con-
flict and are reasonable for the application and operating conditions.

Table 40

AC RPC Distribution Panel Model

AC RPC Distribution Panel

Input Parameter

Number of RPC Modules

Distribution Panel Input Power Level (_>

RPC Unit Output Power Level

RPC Unit Output Voltage Level

Number of RPC Units in RPC Module (z)

RPC Efficiency

Number of Phases

Enclosure Type (FH or CP)

Coldplate Temperature (3)

Coldplate to Radiator Temperature Delta

Available Distribution Panels

Required Distribution Panels

Input Parameter Ranges

Recommended

Input Ranqe

I to 4

10 to 100 kWe

i to 20 kWe

20 to 500 Vdc

I to 20

Range: 99.8 to 99.9%
99.85% is Recommended

I or 3

Finned Heat Exchanger (FH)

Coldplate (CP)

I0 to IO0 ° C

40 ° C Suggested for FH Enclosure

60° C Suggested for CP Enclosure

0 to 20 ° C

16.7 ° C is Recommended

Equal to or Greater

than Required Panels

No Limit

I. The distribution panel input power level must be defined by the user. The ir_put power to a distribution

panel is often tess than the connected output power load. The user may also specify an inl_Jt power level

larger than the connected toad to allow for future growth.

2. The number of units depends on the power level of the individual RPC units. The defined RPC No(kJte power

level should be between 10 and 20 kWe. Refer to Application Notes for more information.

3. Because the Cotdplate Enclosure has a lower thermal resistatce th_n the Fi'_ned Meat Exchanger Enclosure,

the coldplate ten_oerature can be set 20 ° C higher when the ColdpLate Enclosure is selected.
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Model Equation Listing: Table 41 defines the variables utilized in the dc RPC
distribution panel model equations.

RPPo

DPPl

RPVo

ADP

RDP

1RPUM

3RPUM

NRPU

RPMM

RPE

lCCM

3CCM

]CMM

3CMM

1CMP

3CMP

DPEM

DPE

RBSE

CV

CH

Table 41
AC RPC Distribution Panel Model Variable Definitions

RPC Unit Output Power Level (kWe)

Distribution Panel Input Power Level (kWe)

RPC Unit Voltage Output (Vrms)

Available Distibution Panels

Required Distribution Panels

Single-Phase RPC Unit Mass (kg)
The variable RPUM will be suffixed with a number to

identify an RPC Unit located in a specific module.

For example IRPUM2 is a single-phase RPC Unit locat-
ed in RPC module #2. This nomenclature is also used

for 3-phase RPCs and for the variables NRPU and
RPMM.

3-Phase RPC Unit Mass (kg)

Number of RPC Units in a Module

RPC Module Mass (kg)

RPC Efficiency (%)

Single-Phase Conductor and Connector Mass (kg)

3-Phase Conductor and Connector Mass (kg)

Single-Phase Control and Monitoring Mass (kg)

3-Phase Control and Monitoring Mass (kg) .

Single-Phase Control and Monitoring Power (kg)

3-Phase Control and Monitoring Power (kg)

Distribution Panel Electronics Mass (kg)

Distribution Panel Efficiency (%)

Combined RPC and Bus Section Efficiency (%)

Component Volume (m3)

Component Height (m)
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CW

CL

FHEM

CPEM

RA

RAM

TD

T

Component Width (m)

Component Length (m)

Finned Heat Exchanger Enclosure Mass (kg)

Coldplate Based Enclosure Mass (kg)

Radiator Area (mz)

Radiator Mass (kg)

Coldplate to Radiator Temperature Delta (°C)

Coldplate Temperature (°C)

The EXCEL model "ACRPC.XLS" estimates the mass of a ac RPC distribution

panel. The following equations are contained in this model.

AC RPC Distribution Panel Component Equations

RBSE:O.999*RPE

The efficiency of the distribution panel bus was assumed to be 99.9%.

Single-Phase: DPE=((DPPI-ICMP/IOOO)*O.999*RPE)/DPP l

3-Phase: DPE=((DPPI-3CMP/IOOO)*O.999*RPE)/DPP I

Single-Phase: DPEM=IRPMM+ICCM+ICMM

3-Phase: DPEM=3RPMM+3CCM+3CMM or DPEM:3RPMM+4CCM+3CMM

AC RPC Distribution Panel RPC Equations

IRPUM:O.38*((EXP(O.OOO3/(I-RPE)))/I.22)*(ADP/RDP)*RPPo*(RPPo/RDP) °_s*

(RPVo/120) °'°I

3RPUM=O. 5* ( ( EXP(0.0003/( I- RPE) ) )/1.22)* (ADP/RDP)*RPPo* (RPPo/RDP)°'2" (RPVo/120) °'°I

The number of phases is defined for each active RPC module by the user. The RPC
unit mass equation that is selected, single- or 3-phase, is determined by the
number of phases input by the user for the module that it resides in.

IRPMMI:INRPUI*IRPUMI

3RPMMI=3NRPUI*3RPUMI

The RPC module mass is also calculated for RPC modules #2, #3, and #4 depending
on the number of user defined modules. The mass of an RPC module is calculated
from the user defined RPC unit power level and the number of RPC units specified
in the module.
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The RPC

3-phase

The 3-phase,

by the model
user. This

Single-Phase:

3-Phase:

Module Mass (RPMM)
RPC modules.

AC

RPMM=IRPMMI+IRPMM2÷IRPMM3+IRPMM4

RPMM=3RPMMI+3RPMM2+3RPMM3÷3RPMM4

can also be calculated for a mixture

AC

of single- and

AC

RPC Distribution Panel Conductor and Connector Equation

ICCM=(ADP/RDP)*(O.O56*(DPP_*IOOO)*DPE/RPVo)

3CCM=(ADP/RDP)*((3°'s/2)*O.O56*(DPP_*IOOO)*DPE/RPVo)

4CCM=(ADP/RDP)*((2/3°'S)*o.o56*(DPPI*IOOO)*DPE/RPVo)

4-wire conductor and connector mass (4CCM) is automatically selected

if a mixture of single- and 3-phase RPC modules is specified by the
combination would require a 4-wire bus.

RPC Distribution Panel Control and Monitoring Equations

ICMM=ADP*(1.4+O.9*(DPPI/RDP)°'3+O.25*(DppI/RDP)°-3)

3CMM=ADP*(2+2.5*(DPPJRDP)°'3+O.75*(DppI/RDP) °-3)

ICMP=ADP*55.6*(Po/RDP) °'I

3CMP=ADP*79.4*(PJRDP) °'_

RPC Distribution Panel Volume and Dimension Equations

CV=DPEM/(0.342*IO00)

CH=O.7,CV o.3333

CW=I.I*CV o.3333

CL=I.3,CV o.3333

AC RPC Distribution Panel Enclosure Equations

FHEM=44.26*CV°.6666+27,(CL,CW )

CPEM:44.26*CV°_+IO.25*(CL*CW)

AC RPC Distribution Panel Radiator Equations

RA=(I.1212E+IO*(DPPz-DPE*DPP_)/((T+273-TD)_-2504)

RAM=4.159*RA
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4.0 CREATING PMAD SYSTEM MODELS

A complete PMAD system model is created by defining the power system arch-
itecture, selecting components consistent with this architecture, and then link-
ing the input and output parameters of all the components with their intercon-
necting transmission lines. By creating a complete PMAD system model, the impact
of changes in power, voltage, frequency, etc. can be seen on the total power sys-
temmass. To create a system model, individual component models must be connect-
ed to show the flow of power through the system and the voltage reductions that
occur because of component losses. To assist the user in interconnecting models,
the locations of the input and output power and voltage levels are mentioned.
If these parameters are not specifically identified in the model, techniques for
calculating them are discussed.

The input power provided to a component is equal to the output power of the
transmission line that feeds it. This component's input voltage is also equiva-

lent to the output voltage of the line supplying it. In the model input section,

the output power level of a component is normally defined by the user. The input

power level is typically provided as an output to facilitate interconnecting the
models; however, if it is not available, it can be calculated by using the total

component efficiency. In the RBI switchgear unit models, the output power rating
of each RBI is specified by the user. The total output power can be determined

by summing these individual values; the input power is provided as a model out-

put. In the RPC distribution panel models, the power output for each of the RPCs
and the power supplied to the panel are defined by the user because the panel

power feed can differ considerably from the connected load. In models that con-
tain a transformer stage, the user must define both the input and output voltage

levels since they determine the transformer step ratio. The input voltage level

for the rectifier model is provided, because it will be different depending on

whether a single- or 3-phase rectifier is selected. In the RBI and RPC models,

the input voltage level can be calculated by dividing the output voltage by the
"Efficiency of the Bus and RBI (RPC) Section" value provided by the model.

Since a complete PMAD system model consists of several power conditioning
and transmission line models that are linked together to display the total impact
of different power, voltage, and frequency levels; it is probably best to define
a parameter that is common throughout the system, such as the transmission fre-
quency, in a systems input section. It may also be convenient to locate many of
the component input parameters in this same systems input section. Key systems
output parameters can be obtained by combining the values obtained from individu-
al component models. For example, total system mass is determined by summing the
masses of the individual components and lines; the efficiency of the power system
is calculated by multiplying the efficiencies of the series connected elements

together. Locating these power system parameters in a system output section that
is close to the system input section will allow a person to immediately see the
impact of changing an input parameter without having to go to another location
on the spreadsheet or individually assessing the effect on each component.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

The purpose of this task was to create the first set of power conditioning
models that will eventually be part of a library of PMAD component models. After

this library has been completed, it will allow PMAD system designers to evaluate

different power distribution approaches in a timely manner. The first steps in

this process are developing a modeling approach that is acceptable to NASA LeRC,
and refining these models to ensure that they generate results that are both use-

ful and accurate. It is important to realize that these models are just a begin-

ning and that the best way to improve them is to continue to compare the output
obtained from them with the information acquired from ongoing component designs.

The present power conditioning component data base is relatively small and con-

fined to lower power and voltage levels. Because of this shortage, it was neces-

sary extrapolate a considerable distance to generate component models that will

be consistent with future power and voltage levels. To acquire the information

used to create these models, many different sources were consulted; however, the
final models were generated by one person and consequently they must be reviewed

carefully to ensure this information was understood and properly applied.

To create these power conditioning models, it was necessary to generate

equations for each of the stages and elements in a component. This process was

particularly difficult in the case of the component filter stages. In many power

system designs, the power quality and filtering requirements appear to be one of
the last areas defined in detail, possibly because it also seems to be one of the

most hotly debated areas. Consequently, the filter designs in many preliminary

component assessments are rather immature. In addition, filter designs suitable
for space applications also tend to be for high frequency applications. Up until

this point in time, it has not been necessary to address in detail low frequency

filter designs and requirements. However, in the future many high power systems

will use alternators for power conversion. So regardless of the power distribu-

tion form ultimately selected, the filtering requirements for components immedi-

ately following the alternator output must be addressed. The component models

in this report reflect the lack of information present in the filtering area, and

consequently the equations pertaining to the filter stages are probably the least
accurate and require the most work.

The models included in this report are primarily oriented toward lunar sur-

face applications; however, they are considered to be flexible enough to permit

them to be used in a wide variety of applications. To properly define the model

inputs and interconnect them to form a system, the user must be familiar with the

characteristics of an application, and formulate a rough design. The power sys-

tem architecture should be defined, and issues such as component maintainability
and system filtering should be considered. To illustrate the use of these models

in an alternate application, the characteristics of a nuclear electric propulsion
(NEP) power system will be considered. An NEP system will probably employ a mod-

ular architecture to enhance reliability; therefore, the model option that allows
a person to define the number of required and available modules should be used.

An NEP system will probably use coldplates for cooling and mount many components

on them. Components probably will not be replaced if they fail since this vehi-
cle transports people and hardware far from earth orbit. These last two features

favor the use of the model coldplate option. A coldplate enclosure is also much

lighter than a finned heat exchanger enclosure. The last issue is are the power,

voltage, and frequency characteristics incorporated into the models adequate for

this application. The model capabilities defined in Table 42 indicate a system
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model with components rated up to 250 kWe can be created. An NEP power system
will probably require some power conditioning components that are rated for over
I MWe. While the power levels listed in Table 42 seem to indicate these models

are not suitable for an NEP application, this probably is not the case. These

models were primarily intended for a lunar application that did not appear to

require component power levels in excess of 250 kWe. Although these component

models must be evaluated at power levels around I MWe, it is expected they will

prove to yield meaningful results. The voltage capabilities already incorporated

into the models, up to 10,000 volts, seem to be adequate for an NEP applications.

It is felt that enough component models were created during this task to evaluate
dc and lower frequency ac PMAD systems; however, ac and dc load receiver models

must be created to evaluate a high frequency system. Finally, the filter stages
incorporated into the models may not even be needed in an NEP application because

an electric propulsion system is already extremely noisy. It does not appear to

be necessary to provide a filtered output to these devices. Based on this

evaluation, the current models can be reconfigured and used for NEP power system

analyses. This assignment is highly recommended for a future task order study.

Although several power conditioning component models were created and docu-

mented during this task order, it has already been mentioned that other models

are required to allow a thorough evaluation of lunar base PMAD alternatives and

to perform PMAD system studies for other applications. Ac and dc load receiver

models are required to evaluate high frequency power distribution systems. Load
receivers are used to convert the high frequency input into a form suitable for

the loads. At the power source end, dc shunt regulator and ac speed regulator
models are required. These components shunt excess power to a parasitic load.

A parasitic load radiator model is also necessary. Linear alternators will gen-
erally require a capacitor bank for power factor correction; a model to estimate

the mass of this hardware would be beneficial. Finally, the power sources may
need a battery for backup power and to start the alternators. A model of a bat-

tery charge/discharge unit is required to fully estimate the mass of this energy

storage system. It is suggested that models be created for these power condi-
tioning components during a follow up task order.

In addition to the power conditioning components, a PMAD system includes
transmission lines. Auburn University addressed dc transmission line models in
their report: "Electrical Transmission on the Lunar Surface - Part I DC Trans-

mission". Under a separate contract, it is understood that they documented a de-

tailed study on ac transmission lines. During Task Order No. 8, it was discov-

ered that the equations contained in Auburn's dc transmission line report could
be used to create comprehensive dc transmission line models. It is assumed that

the equations in their ac transmission line report could also be used to create
high fidelity ac transmission line models. These two items are recommended for

future task orders. However, the ac transmission model development should only
be undertaken if Auburn's report on ac transmission lines is available. Other-

wise, it would be necessary to basically repeat this study to generate ac trans-
mission line models.
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